Source: aiservermodel.js

import PreProcess from './preprocess.js';
import PostProcess from './postprocess.js';
import AsyncQueue from './asyncqueue.js';
import Mutex from './mutex.js';
import DGError from './dgerror.js';
import StatsDict from './statsdict.js';

// Load msgpack library from the adjacent file
import { loadMsgpack } from './msgpack.min.js';
if (typeof msgpack === 'undefined') {
    loadMsgpack();
}

/**
 * @class
 * @classdesc A comprehensive class for handling AI model inference using an AIServer 
 * over WebSocket. Designed to provide a streamlined interface for sending data to the server for inference, receiving
 * processed results, and displaying or further processing these results as needed. <br><br>
 * Features: <br>
 * - WebSocket Communication: Handles the full lifecycle of a WebSocket connection for real-time data streaming.<br>
 * - Preprocessing & Postprocessing: Integrates with PreProcess and PostProcess classes to prepare data for the model and visualize results.<br>
 * - Queue Management: Uses AsyncQueue instances to manage inbound and outbound data flow.<br>
 * - Concurrency Control: Ensures thread-safe operations through mutex usage.<br>
 * - Dynamic Configuration: Allows runtime modification of model and overlay parameters.<br>
 * - Callback Integration: Supports custom callback functions for handling results outside the class.<br>
 *
 * @example <caption>Usage:</caption>
 * - Create an instance with the required model details and server URL.
 * let model = zoo.loadModel('some_model_name', {} );
 * - Use the `predict` method for inference with individual data items or `predict_batch` for multiple items.
 * let result = await model.predict(someImage);
 * for await (let result of model.predict_batch(someDataGeneratorFn)) { ... }
 * - Access processed results directly or set up a callback function for custom result handling.
 * - You can display results to a canvas to view drawn overlays.
 * await model.displayResultToCanvas(result, canvas);
 */
class AIServerModel {
    /**
     * Do not call the constructor directly. Use the `loadModel` method of an AIServerZoo instance to create an AIServerModel.
     * @constructor
     * @param {Object} options - Options for initializing the model.
     * @param {string} options.modelName - The name of the model to load.
     * @param {string} options.serverUrl - The URL of the server.
     * @param {Object} options.modelParams - The default model parameters.
     * @param {number} [options.max_q_len=10] - Maximum queue length.
     * @param {Function} [options.callback=null] - Callback function for handling results.
     * @param {Object} [options.labels=null] - Label dictionary for the model.
     * @param {Array<string>} options.systemDeviceTypes - Array of 'RUNTIME/DEVICE' strings supported by the AIServer.
     * @param {boolean} measureTime=false - Whether to measure inference and collect other statistics.
     * @param {Object} [additionalParams] - Additional parameters for the model.
     */
    constructor({ modelName, serverUrl, modelParams, max_q_len = 10, callback = null, labels = null, systemDeviceTypes }, additionalParams) {
        this.debugLogsEnabled = false;
        // The creation of a AIServerModel only happens when the user requested a new model on the serverUrl.
        // Thus we need to initialize a new websocket with the first packet having the modelname,
        // as well as the config if needed
        this.modelName = modelName;
        this.serverUrl = serverUrl;
        this.labels = labels; // Label dictionary for this model
        this.systemDeviceTypes = systemDeviceTypes; // Array of 'RUNTIME/DEVICE' strings supported by the AIServer.
        if (!this.systemDeviceTypes || this.systemDeviceTypes.length === 0) {
            throw new DGError("System Device Types are missing from Zoo upon initalization of AIServerModel class!", "MISSING_SYSTEM_DEVICE_TYPES", {}, "An error occurred during initialization.", "AIServerZoo should have sent these to the model in loadModel().");
        }
        this._deviceType = null;

        // modelParams is the JSON of DEFAULT model parameters grabbed during zoo.loadModel()
        // All modifications to model params will have to be sent as config messages to the server
        this.modelParams = modelParams;
        this.additionalParams = additionalParams;
        this.dirty = false; // Dirty flag to signify if model params have changed (inference parameters)
        this.modelConfig = {}; // Configuration for websocket to initialize non-default model parameters.
        // Pre/Post processors are initialized upon first call to functions that need them
        this.preProcessor = null;
        this.postProcessor = null;
        this.configParamsDirty = true; // Dirty flag specifically for display / input handling parameters
        this.initialized = false; // true if acknowledgement packet received from server
        this.infoQ = new AsyncQueue(max_q_len, 'infoQ');
        this.resultQ = new AsyncQueue(max_q_len, 'resultQ');
        this.callback = callback;
        this.poison = false; // Poison flag to stop all predict calls

        // Now, initialize some other member values using modelParams
        this.finishedSettingAdditionalParams = false;
        this.initMemberValues();
        // Initializes websocket to load the model, initialize listeners
        this.initializeSocket();

        // class member variable to store the last processed message Promise
        this.lastProcessedMessage = Promise.resolve();

        this.mutex = new Mutex(); // Why not?
        this.MAX_SOCKET_WAIT_MS = 10000; // Max Time to wait for the socket connection to be opened before error.

    }

    /**
    * Logs messages to the console if debug logs are enabled.
    * @private
    * @param {...any} args - The messages to log.
    */
    log(...args) {
        if (this.debugLogsEnabled) {
            console.log(...args);
        }
    }

    /**
     * Initializes member values from model parameters.
     * @private
     */
    initMemberValues() {
        if (this.modelParams && this.modelParams["MODEL_PARAMETERS"] && this.modelParams["MODEL_PARAMETERS"].length > 0) {
            const parameters = this.modelParams["MODEL_PARAMETERS"][0];
            const preProcessParams = this.modelParams["PRE_PROCESS"][0];

            this.modelPath = parameters.ModelPath;

            // NCHW info is either under 'MODEL_PARAMETERS' or 'PRE_PROCESS'
            if (parameters.ModelInputN) {
                this.modelInputN = parameters.ModelInputN;
                this.modelInputC = parameters.ModelInputC;
                this.modelInputH = parameters.ModelInputH;
                this.modelInputW = parameters.ModelInputW;
            } else if (preProcessParams.InputN) {
                this.modelInputN = preProcessParams.InputN;
                this.modelInputC = preProcessParams.InputC;
                this.modelInputH = preProcessParams.InputH;
                this.modelInputW = preProcessParams.InputW;
            } else {
                throw new DGError("Model Parameters don't contain input height / width.", "MISSING_PARAMS", { parameters, preProcessParams }, "Ensure model parameters include input height and width.", "Check the model's documentation to provide the required input height and width parameters.");
            }
        }

        // Set internal parameters to default, only if the additionalParams weren't handled yet.
        if (!this.finishedSettingAdditionalParams) {
            // Internal model pre/post processing and inference parameters, initially set to defaults.
            this._labelWhitelist = null;
            this._labelBlacklist = null;
            // Display Parameters
            this._overlayColor = [255, 0, 0];
            this._overlayLineWidth = 2;
            this._overlayShowLabels = true;
            this._overlayShowProbabilities = false;
            this._overlayAlpha = 0.75;
            this._overlayFontScale = 1.0;
            this._autoScaleDrawing = false;

            // Input Handling Parameters
            this._inputLetterboxFillColor = [0, 0, 0];
            this._inputPadMethod = 'letterbox';
            this._saveModelImage = false;
            this._inputCropPercentage = 1.0;

            // Parameters for measure time
            this._measureTime = false;
            this.timeStats = null;
        }
        // Assign additional parameters, using our set/get functions. Try to overwrite them by these values, and
        // warn the user if that parameter doesn't exist.
        // Only do this ONCE: prior to websocket opening.
        if (this.additionalParams !== null && this.additionalParams !== undefined && !this.finishedSettingAdditionalParams) {
            for (const [key, value] of Object.entries(this.additionalParams)) {
                this.log('initMemberValues(): Setting additional param', key, 'to', value);

                // Check for the existence of a setter for 'key'
                const descriptor = Object.getOwnPropertyDescriptor(Object.getPrototypeOf(this), key);
                const hasSetter = descriptor && typeof descriptor.set === 'function';

                if (hasSetter) {
                    try {
                        // console.log('Invoking setter to set', key, 'to', value);
                        this[key] = value; // invoke the setter for 'key'
                        // console.log('Now, the value for', key, 'is:', this[key]);
                    } catch (error) {
                        console.warn(`Error using setter for '${key}': ${error.message}`);
                    }
                } else {
                    console.warn(`Setter for '${key}' does not exist or cannot be used.`);
                }
            }
        }

        if (!this.additionalParams?.deviceType) {
            console.log("User did not specify deviceType in additionalParams. Attempting to infer deviceType from Model Parameters.");
            // If the user did NOT specify deviceType inside the additional options for the model,
            // we need to create it internally ourselves as the 'RUNTIME/DEVICE' pair.
            // We do this by combining 'RuntimeAgent' and 'DeviceType' strings from getModelParameter()
            try {
                this._deviceType = this.getModelParameter('RuntimeAgent') + '/' + this.getModelParameter('DeviceType');
                // this.deviceType = this.getModelParameter('RuntimeAgent') + '/' + this.getModelParameter('DeviceType'); // Don't use setter, it will create unnecessary modelConfig, dirty flag, etc.
                console.log('Set deviceType from Model Parameters:', this.deviceType);
            } catch (error) {
                throw new DGError('Failed to infer device type from Model Parameters:' + error, "DEVICE_TYPE_INFERENCE_ERROR", { error }, "An error occurred during device type inference.", "Please check the model parameters to ensure they have RuntimeAgent and DeviceType set");
            }
        } else {
            // User DID set the deviceType. The validity was checked inside the setter of deviceType.
            console.log('User set deviceType using additionalParams:', this.deviceType);
        }
        this.finishedSettingAdditionalParams = true;

        // Now set dirty to false. As some setters use setModelParameter(), this creates the this.modelConfig which gets passed
        // to the websocket upon model initialization. Dirty is set to true when these are modified even if model isn't initialized
        // yet, so we set it back to false, so we don't reinitialize the websocket connection for no reason.
        this.dirty = false;

        /*
        imageBackend - maybe in future
        inputNumpyColorspace - not applicable
        inputResizeMethod - maybe in future, add nicer downscale functiosn 
        */
        // Control / Information Parameters
        /*

        // TODO:        
        frameQueueDepth // int 1.160 - setters and getters need to have some nice implementation
        measureTime // bool -
        
        nonBlockingBatchPredict // bool - ?
        eagerBatchSize // int 1..80 - ?
        */

        // Inference Parameters set / get through setModelParameter() and getModelParameter()
        // Setters / getters exist to wrap them in input handling
    }

    /**
     * Constructs a configuration for overlay settings which is passed to the pre/post processors. Will 
     * compile every internal parameter settable by the user.
     * 
     * @private
     * @returns {Object} The overlay configuration.
     */
    constructOverlayConfig() {
        return {
            labels: this.labels,
            overlayColor: this._overlayColor,
            overlayLineWidth: this._overlayLineWidth,
            overlayShowLabels: this._overlayShowLabels,
            overlayShowProbabilities: this._overlayShowProbabilities,
            overlayAlpha: this._overlayAlpha,
            overlayFontScale: this._overlayFontScale,
            inputLetterboxFillColor: this._inputLetterboxFillColor,
            inputPadMethod: this._inputPadMethod,
            saveModelImage: this._saveModelImage,
            inputCropPercentage: this._inputCropPercentage,
            autoScaleDrawing: this._autoScaleDrawing
        };
    }

    /**
     * Predicts the result for a given image. <br>
     * 
     * @example If callback is provided:
     * The WebSocket onmessage will invoke the callback directly when the result arrives.
     * 
     * @example If callback is not provided:
     * The function waits for the resultQ to get a result, then returns it.
     * let result = await model.predict(someImage);
     * 
     * @async
     * @param {Blob|File|string|HTMLImageElement|HTMLVideoElement|HTMLCanvasElement|ArrayBuffer|TypedArray|ImageBitmap} imageFile
     * @param {string} [info=performance.now()] - Unique frame information provided by user (such as frame num). Used for matching results back to input images within callback.
     * @param {boolean} [bypassPreprocessing=false] - Whether to bypass preprocessing. Used to send Blob data directly to the socket without any preprocessing.
     * @returns {Promise<Object>} The prediction result.
     */
    async predict(imageFile, info = '_DEFAULT_FRAME_INFO_', bypassPreprocessing = false) {
        const predictStartTime = performance.now();

        let unlockedAlready = true; // only allow one mutex unlock operation per function call.

        // passthrough if the error flag is enabled.
        if (this.poison) return;
        // Outer try catch finally block for handling unexpected errors with cleanup code (e.g. release mutex)
        try {
            // Check if the model needs to be reloaded
            if (this.dirty) {
                this.log('predict(): dirty flag caught. modelParams object prior to reset:', this.modelParams);
                await this.handleDirtyFlag();
            }

            // Generate unique info from the imageFile here if needed
            if (info == '_DEFAULT_FRAME_INFO_') {
                // TODO: performance.now() isn't fast enough! Instead we can just implement a frame counter
                info = `frame_${performance.now()}`;
            }

            // Instantly push the frame info to infoQ
            await this.infoQ.push({ info });

            // Attempt to lock the mutex with a timeout
            const mutexLockPromise = this.mutex.lock();
            const mutexTimeout_ms = 10000;
            const mutexTimeoutPromise = this.timeoutPromise(mutexTimeout_ms, () => this.mutex.cancelLock(mutexLockPromise));

            // Wait for either the mutex to be acquired, or for the timeout to occur
            await Promise.race([
                mutexLockPromise.then(() => { mutexTimeoutPromise.cancel(); }), // Lock acquired
                mutexTimeoutPromise // Timeout
            ]).catch(error => {
                throw new DGError("Error during mutex lock / mutex timeout unlock", "MUTEX_LOCK_TIMEOUT_ERROR", {}, "An error occurred while acquiring the mutex lock.", error);
            });

            unlockedAlready = false; // Set to false, so that now we are allowed to call unlock

            if (bypassPreprocessing) {
                // Ensure that the imageFile is a Blob
                if (!(imageFile instanceof Blob)) {
                    throw new DGError("predict(): Bypassed image must be a Blob.", "INVALID_BYPASSED_IMAGE", {}, "An error occurred during image preprocessing.", "Please check the image and try again.");
                }
                // Attach fake transformationDetails to infoQ.
                let fakeTransformationDetails = {
                    scaleX: 1.0,
                    scaleY: 1.0,
                    offsetX: 0,
                    offsetY: 0
                };

                const infoQObject = { transformationDetails: fakeTransformationDetails, imageFrame: null, modelImage: null, frameStartTime: null };
                if (this._measureTime) {
                    // if measure time is enabled, then we need to also have inference start time added onto our info queue
                    if (!this.timeStats) {
                        this.timeStats = new StatsDict();
                    }
                    infoQObject.frameStartTime = predictStartTime;
                }
                await this.infoQ.update(
                    item => item.info === info, infoQObject
                );
                // Directly send the image to the socket.
                await this.waitForSocketConnection(); // Timeout error here will be caught in outer trycatch
                this.log('predict(): Sending bypassed image to socket with info:', info);
                // unpack blob into float32array
                let blobData = await imageFile.arrayBuffer();
                let floatArray2 = new Float32Array(blobData);
                this.log('predict() sending: ', floatArray2);

                this.socket.send(imageFile);
            } else {
                // Attach frameStartTime to validateAndSendFrame(). This will be picked up by preprocessAndSend().
                // Validate / send the image frame
                await this.validateAndSendFrame(imageFile, info, predictStartTime);
            }

            this.mutex.unlock();
            unlockedAlready = true;

            if (this.callback == null) {
                return await this.resultQ.pop(); // does not instantly complete the try block. waits for the Promise to resolve before returning the resolved value
            }

        } catch (error) {
            this.poison = true; // Set the error flag.
            throw new DGError("An error occurred during predict:" + error, "PREDICT_ERROR", { error }, "An error occurred during predict.");
        } finally {
            // We enter here if there was an exception, OR after the await expression has 
            // been resolved and the function has returned.
            // So, the mutex should be unlocked prior to the return call, but if we
            // get here and it's still locked, it means there was an exception and we
            // must unlock it.
            if (!unlockedAlready) this.mutex.unlock();
        }
    }

    /**
     * Validates/Converts input frame, then sends it to the server.
     * @async
     * @private
     * @param {Blob|File|string|HTMLImageElement|HTMLVideoElement|HTMLCanvasElement|ArrayBuffer} imageFile - The input image.
     * @param {string} info - Frame information for matching results.
     */
    async validateAndSendFrame(imageFile, info, startTime) {
        // Input frame validation / conversion
        let imageFrame = await this.validateAndConvertInputFrame(imageFile);

        if (this.configParamsDirty || !this.preProcessor || !this.postProcessor) {
            await this.initPrePostProcessors();
        }

        await this.preprocessAndSend(imageFrame, info, startTime);
    }

    /**
     * Predicts results for a batch of data. Will yield results if a callback is not provided.
     * @async
     * @generator
     * 
     * @example The function asynchronously processes results. If a callback is not provided, it will yield results.
     * for await (let result of model.predict_batch(data_source)) { console.log(result); }
     * @param {AsyncIterable} data_source - An async iterable data source.
     * @param {boolean} [bypassPreprocessing=false] - Whether to bypass preprocessing.
     * @yields {Object} The prediction result.
     */
    async *predict_batch(data_source, bypassPreprocessing = false) {

        // passthrough if the error flag is enabled.
        if (this.poison) return;
        try {
            // Check if the model needs to be reloaded upon first predict
            if (this.dirty) {
                this.log('predict_batch(): dirty flag caught. modelParams object prior to reset:', this.modelParams);
                await this.handleDirtyFlag();
            }
            // Iterates over asynchronous generator (data source) and waits for each item to be yielded
            // Each iteration of the loop waits for the completion of its asynchronous tasks before moving
            // on to the next one, which implicitly serializes the sequence of operations for each frame
            let prevInfo = '_'; // Duplicate info check, probably not the best impl but works for now
            for await (let [data, info] of data_source) {
                let predictBatchStartTime = performance.now();
                if (info === prevInfo) { // Duplicate info check, probably not the best impl but works for now
                    console.warn('predict_batch(): Duplicate info detected:', info); // Duplicate info check, probably not the best impl but works for now
                    info = info + '_dup'; // Duplicate info check, probably not the best impl but works for now
                } // Duplicate info check, probably not the best impl but works for now
                prevInfo = info; // Duplicate info check, probably not the best impl but works for now

                // Instantly push the frame info to infoQ
                await this.infoQ.push({ info });

                if (bypassPreprocessing) {
                    if (!(data instanceof Blob)) {
                        throw new DGError("predict_batch(): Bypassed image must be a Blob.", "INVALID_BYPASSED_IMAGE", {}, "An error occurred during image preprocessing.", "Please check the image and try again.");
                    }
                    // Attach fake transformationDetails to infoQ.
                    let fakeTransformationDetails = {
                        scaleX: 1.0,
                        scaleY: 1.0,
                        offsetX: 0,
                        offsetY: 0
                    };

                    const infoQObject = { transformationDetails: fakeTransformationDetails, imageFrame: null, modelImage: null, frameStartTime: null };
                    if (this._measureTime) {
                        // if measure time is enabled, then we need to also have core inference start time added onto our info queue
                        if (!this.timeStats) {
                            this.timeStats = new StatsDict();
                        }
                        infoQObject.frameStartTime = predictBatchStartTime;
                    }
                    await this.infoQ.update(
                        item => item.info === info, infoQObject
                    );
                    await this.waitForSocketConnection();
                    this.socket.send(data);
                } else {
                    // Validate / send the image frame
                    await this.validateAndSendFrame(data, info, predictBatchStartTime);
                }

                if (this.callback == null) {
                    // asynchronously process results
                    if (!this.resultQ.empty()) {
                        yield await this.resultQ.pop();
                    }
                }
            }
            // there might still be pending results that have not been processed
            if (this.callback == null) {
                while (!this.infoQ.empty() || !this.resultQ.empty()) {
                    yield await this.resultQ.pop();
                }
            }
        } catch (error) {
            // Is poison enabled? Then we ignore the error and stop.
            if (this.poison) return;

            this.poison = true; // Set the error flag.
            throw new DGError('An error occurred during predict_batch:' + error, "PREDICT_BATCH_ERROR", { error }, "An error occurred during predict_batch.");
        }
    }

    /**
     * Preprocesses the input image prior to sending to websocket. For now, only real preprocessing is resizing the image to model specification. If it's a video, we don't attach it to the infoQ.
     * @async
     * @private
     * @param {Blob} imageFrame - The input frame.
     * @param {string} [info=null] - Frame information for matching results.
     */
    async preprocessAndSend(imageFrame, info = null, predictStartTime = null) {
        if (this.poison) return;
        try {
            // Validate input
            if (!imageFrame || !this.modelInputW || !this.modelInputH) {
                throw new DGError("preprocessAndSend(): missing input parameters.", "MISSING_INPUT_PARAMETERS_ERROR", {}, "An error occurred during image preprocessing.", "Please check the input and try again.");
            }

            const resizeStartTime = performance.now();  // PERFORMANCE LOGGING for image resizing
            const { blob: resizedBlob, transformationDetails } = await this.preProcessor.resizeImage(imageFrame);
            const imageResizeTime = performance.now() - resizeStartTime;
            this.log('resizeImage() took:', imageResizeTime, 'ms.'); // PERFORMANCE LOGGING


            // Check for scale factors
            if (!transformationDetails.scaleX || !transformationDetails.scaleY) {
                throw new DGError("Scale factors are missing after resizeImage()", "MISSING_SCALE_FACTORS_ERROR", {}, "An error occurred during image preprocessing.", "Please check the image and try again.");
            }
            // Check for offset values
            if (typeof transformationDetails.offsetX === 'undefined' || typeof transformationDetails.offsetY === 'undefined') {
                throw new DGError("Offset values are missing after resizeImage()", "MISSING_OFFSET_VALUES_ERROR", {}, "An error occurred during image preprocessing.", "Please check the image and try again.");
            }

            // Check for resizedBlob
            if (!resizedBlob) {
                throw new DGError("preprocessAndSend(): resizedBlob is null or undefined", "RESIZED_BLOB_NULL_ERROR", {}, "An error occurred during image preprocessing.", "Please check the image and try again.");
            }

            // update the infoQ with the original input frame and transformation details
            // First we need to handle the case where the input is a video element
            if (imageFrame instanceof HTMLVideoElement) {
                // We don't need to attach the video element to the infoQ.
                // Instead we just make it null.
                imageFrame = null;
            }

            const infoQObject = { transformationDetails, imageFrame: imageFrame, modelImage: null, frameStartTime: null };
            if (this._saveModelImage) {
                // Update the existing info in the queue, along with the modelImage (resized image blob)
                infoQObject.modelImage = resizedBlob;
            }

            if (this._measureTime) {
                if (!this.timeStats) {
                    this.timeStats = new StatsDict();
                }

                this.timeStats.addNewStat("ImagePreprocessDuration_ms", imageResizeTime);
                infoQObject.frameStartTime = predictStartTime;
            }

            // console.log("Right before sending out the darn thing to infoQ");
            await this.infoQ.update(
                item => item.info === info, infoQObject
            );
            await this.waitForSocketConnection(); // Timeout error here will be caught in outer trycatch
            // Directly send Blob data
            this.log('preprocessAndSend(): Sending blob to socket with info:', info);
            this.socket.send(resizedBlob);
        } catch (error) {
            this.poison = true; // Set the error flag.
            throw new DGError("preprocessAndSend(): Failed to preprocess the image:" + error, "PREPROCESS_IMAGE_FAILED", { error }, "Failed to preprocess the image.");
            // Now, all subsequent predict / predict_batch calls will be passthrough
        }
    }

    /**
     * Validates and converts the user's input frame to a compatible format for resizeImage().
     * @async
     * @private
     * @param {Blob|File|string|HTMLImageElement|HTMLVideoElement|HTMLCanvasElement|ArrayBuffer|SVGImageElement|ImageBitmap|OffscreenCanvas|ImageData|Array} image - The input image.
     * @returns {Promise<ImageBitmap|HTMLImageElement|HTMLVideoElement|HTMLCanvasElement>} The validated and converted input frame.
     */
    async validateAndConvertInputFrame(image) {
        if (!image) {
            throw new DGError('validateAndConvertInputFrame(): Image must be provided.', "INVALID_IMAGE_INPUT", {}, "Image must be provided.");
        }
        // Directly passthrough for these image types, as they can be directly used with our resizeImage() implementation:
        // HTMLImageElement
        // SVGImageElement
        // HTMLVideoElement
        // HTMLCanvasElement
        // ImageBitmap
        // OffscreenCanvas
        // TODO: Create tests for all of the above types ^^ (only ImageBitmap is tested......!)
        if (image instanceof HTMLImageElement || image instanceof SVGImageElement || image instanceof HTMLVideoElement || image instanceof HTMLCanvasElement || image instanceof ImageBitmap || image instanceof OffscreenCanvas) {
            return image;
        }
        // For Blob, ImageData, and File types, we use createImageBitmap()
        if (image instanceof Blob || image instanceof ImageData) {
            // Blob and ImageData are valid input types, but we need to convert them to an ImageBitmap
            const imageBitmap = await createImageBitmap(image);
            return imageBitmap;
        }

        if (image instanceof File) {
            // Check if the file is an image
            if (!image.type.startsWith('image/')) {
                throw new DGError('validateAndConvertInputFrame(): input image is a File but is not an image.', "INVALID_IMAGE_INPUT", {}, "File is not an image.");
            }
            // Convert the File to an ImageBitmap
            const imageBitmap = await createImageBitmap(image);
            return imageBitmap;
        }

        // Handle Data URLs, image URLs, base64 strings, ArrayBuffers, and typed arrays
        if (typeof image === 'string') {
            // Data URL
            if (image.startsWith('data:')) {
                return await this.convertDataUrlToImageBitmap(image);
            }
            try {
                // TODO: Need some more robust way to validate URLs...
                new URL(image);  // This will throw an error if `image` is not a valid URL
                // if (image.startsWith('http')) 
            } catch (error) {
                // If here, the string is neither a Data URL nor a valid URL, so it should be a base64 string
                return await this.convertBase64ToImageBitmap(image);
            }
            // Fetching image from URL
            return await this.convertImageURLToImageBitmap(image);
        }

        if (image instanceof ArrayBuffer) {
            return await this.convertArrayBufferToImageBitmap(image);
        }

        if (image instanceof Uint8Array || image instanceof Uint16Array || image instanceof Float32Array) {
            return await this.convertTypedArrayToImageBitmap(image);
        }

        throw new DGError('Invalid image input type, it is: ' + typeof (image), "INVALID_IMAGE_INPUT", {}, "Invalid image input type.");
    }

    /**
     * Converts a data URL to an ImageBitmap.
     * @private
     * @async
     * @param {string} dataUrl - The data URL to convert.
     * @returns {Promise<ImageBitmap>} The converted ImageBitmap.
     */
    async convertDataUrlToImageBitmap(dataUrl) {
        if (!dataUrl.startsWith('data:')) {
            throw new DGError('Invalid data URL: ' + dataUrl, "INVALID_DATA_URL", {}, "Invalid data URL.");
        }
        const response = await fetch(dataUrl);
        const blob = await response.blob();
        return await createImageBitmap(blob);
    }
    /**
     * Converts an image URL to an ImageBitmap.
     * @private
     * @async
     * @param {string} imageUrl - The image URL to convert.
     * @returns {Promise<ImageBitmap>} The converted ImageBitmap.
     */
    async convertImageURLToImageBitmap(imageUrl) {
        try {
            new URL(imageUrl); // Validates the URL
            const response = await fetch(imageUrl);
            const blob = await response.blob();
            return await createImageBitmap(blob);
        } catch (error) {
            throw new DGError('Invalid image URL: ' + imageUrl + ' : ' + error, "INVALID_IMAGE_URL", { error }, "Invalid image URL.");
        }
    }

    /**
     * Converts a base64 string to an ImageBitmap.
     * @private
     * @async
     * @param {string} base64 - The base64 string to convert.
     * @returns {Promise<ImageBitmap>} The converted ImageBitmap.
     */
    async convertBase64ToImageBitmap(base64) {
        try {
            const byteString = atob(base64);
            const ab = new ArrayBuffer(byteString.length);
            const ia = new Uint8Array(ab);
            for (let i = 0; i < byteString.length; i++) {
                ia[i] = byteString.charCodeAt(i);
            }
            let blob = new Blob([ab], { type: 'image/jpeg' });
            return await createImageBitmap(blob);
        } catch (error) {
            throw new DGError('Invalid base64 string: ' + base64 + ' : ' + error, "INVALID_BASE64_STRING", { error }, "Invalid base64 string.");
        }
    }

    /**
     * Converts an ArrayBuffer to an ImageBitmap.
     * @private
     * @async
     * @param {ArrayBuffer} arrayBuffer - The ArrayBuffer to convert.
     * @returns {Promise<ImageBitmap>} The converted ImageBitmap.
     */
    async convertArrayBufferToImageBitmap(arrayBuffer) {
        if (!(arrayBuffer instanceof ArrayBuffer)) {
            throw new DGError('Invalid ArrayBuffer input: ' + arrayBuffer, "INVALID_ARRAY_BUFFER", {}, "Invalid ArrayBuffer input.");
        }
        const blob = new Blob([arrayBuffer]);
        return await createImageBitmap(blob);
    }

    /**
     * Converts a typed array to an ImageBitmap.
     * @private
     * @async
     * @param {string} imageUrl - The image URL to convert.
     * @returns {Promise<ImageBitmap>} The converted ImageBitmap.
     */
    async convertTypedArrayToImageBitmap(typedArray) {
        if (!(typedArray instanceof Uint8Array)) {
            throw new DGError('Invalid Uint8Array input: ' + typedArray, "INVALID_TYPED_ARRAY", {}, "Invalid Uint8Array input.");
        }
        const blob = new Blob([typedArray.buffer]);
        return await createImageBitmap(blob);
    }

    /**
     * Reset the socket to handle model parameter change. Waits for outstanding frames to be processed.Handles model parameter changes and resets the socket if necessary.
     * @private
     * @async
     */
    async handleDirtyFlag() {
        this.log('handleDirtyFlag(): dirty flag caught. modelParams object prior to reset:', this.modelParams);

        if (this.infoQ.empty() && this.resultQ.empty()) {
            this.resetSocket();
        } else {
            // Wait for this.infoQ.onPop listener, check if all empty.
            // If all empty, then finally reset the socket
            // This promise resolves when both queues are empty
            await new Promise(resolve => {
                const checkQueuesEmptyAndReset = () => {
                    if (this.infoQ.empty() && this.resultQ.empty()) {
                        if (this.infoQ.hasEventListener('onPop')) {
                            this.infoQ.removeEventListener('onPop', checkQueuesEmptyAndReset);
                        }
                        if (this.resultQ.hasEventListener('onPop')) {
                            this.resultQ.removeEventListener('onPop', checkQueuesEmptyAndReset);
                        }
                    }
                    this.resetSocket();
                    resolve();
                };
                // Add the listeners
                this.infoQ.addEventListener('onPop', checkQueuesEmptyAndReset);
                this.resultQ.addEventListener('onPop', checkQueuesEmptyAndReset);
            });
        }
        // After resetting the socket, no need to wait for it to be back up again
        // as this happens prior to sending frame to socket
    }


    /**
     * Initializes onmessage and onerror listeners for the websocket.
     * @private
     */
    initSocketListeners() {
        this.socket.onmessage = (event) => {
            if (this.poison) return;
            // Chaining the promises of message processing, making sure that a new message
            // will only start processing after the previous one has finished. The
            // this.lastProcessedMessage keeps track of the most recent message's processing 
            // status, ensuring they are processed sequentially.
            // This way, even if onmessage is triggered multiple times rapidly, each message 
            // will be processed in the order they arrived, ensuring that the results won't get mismatched

            this.lastProcessedMessage = this.lastProcessedMessage.then(async () => {
                // Convert Blob to ArrayBuffer
                const arrayBuffer = await event.data.arrayBuffer();

                // Create a Uint8Array from the ArrayBuffer
                const uint8Array = new Uint8Array(arrayBuffer);

                // Decode MessagePack to JSON
                // eslint-disable-next-line no-undef
                let data = msgpack.decode(uint8Array);

                if (!this.initialized && data.model_params) {
                    this.log('onmessage: Succesfully loaded model', this.modelName);
                    // this.log('onmessage: Setting model params to:', data.model_params);
                    this.modelParams = data.model_params;
                    this.initMemberValues();
                    this.initialized = true;
                } else if (this.initialized) {
                    let combinedResult;

                    if (this.poison) return;
                    // Error check the result. If there is an error:
                    // - ignore all subsequent results
                    // - turn on poison flag to make predict calls passthrough
                    const errorMsg = this.errorCheck(data);
                    if (errorMsg) {
                        this.poison = true;
                        throw new DGError(`Error caught in result object: ${errorMsg}`, "RESULT_ERROR", { error: errorMsg }, "Error caught in result object.");
                    }


                    // Prepare the frame info for this result
                    // Grab modelImage if saveModelImage enabled
                    const { info, transformationDetails, imageFrame, modelImage, frameStartTime } = await this.infoQ.pop();

                    // Log the result and info
                    this.log('onmessage: Result received for info:', info);
                    // Check for transformationDetails
                    if (!transformationDetails && !this.poison) {
                        // We need to be very descriptive.
                        // Log info, imageFrame, data, infoQ status
                        console.warn('onmessage: Result received but transformationDetails are missing for info:', info);

                        throw new DGError("Transformation details are missing from the infoQ", "MISSING_TRANSFORMATION_DETAILS_ERROR", {}, "An error occurred while processing the result.", "Please try again later.");
                    }

                    // Logic for filtering objects based on labelWhitelist and labelBlacklist
                    if (this._labelWhitelist || this._labelBlacklist) {
                        // dummy check: Does this model even have labels?
                        if (!this.labels) {
                            console.warn('labelWhitelist/labelBlacklist is set but this model does not have a label dictionary. Ignoring the labelWhitelist/labelBlacklist.');
                        } else {
                            // whitelist set and blacklist set
                            if (this._labelWhitelist && this._labelBlacklist) {
                                const filteredData = data.filter(item => this._labelWhitelist.includes(item.label) && !this._labelBlacklist.includes(item.label));
                                data = filteredData;
                            }
                            // whitelist set, blacklist not set
                            else if (this._labelWhitelist) {
                                const filteredData = data.filter(item => this._labelWhitelist.includes(item.label));
                                data = filteredData;
                            }
                            // blacklist set, whitelist not set
                            else {
                                const filteredData = data.filter(item => !this._labelBlacklist.includes(item.label));
                                data = filteredData;
                            }
                        }
                    }

                    // Attach scales / offsets to the result object
                    data.scaleX = transformationDetails.scaleX;
                    data.scaleY = transformationDetails.scaleY;
                    data.offsetX = transformationDetails.offsetX;
                    data.offsetY = transformationDetails.offsetY;

                    // Form the result array and the combinedResult object
                    const resultArray = [data, info];
                    combinedResult = { result: resultArray, imageFrame };

                    if (this._saveModelImage) {
                        combinedResult.modelImage = modelImage;
                    }

                    if (this._measureTime) {
                        if (!this.timeStats) {
                            this.timeStats = new StatsDict();
                        }
                        // Dynamically find an Object named 'Timing' within `data` object
                        let timingObject = null;
                        try { timingObject = data.find(item => item.hasOwnProperty('Timing')); } catch (e) { console.warn('onmessage: Error finding Timing object in result data:', e); }
                        if (!timingObject) {
                            console.warn('onmessage: Timing object not found in result data.');
                        } else {
                            timingObject = timingObject.Timing;
                            console.log('onmessage: Timing object found in result data:', timingObject);
                            const timingKeys = [
                                "CorePreprocessDuration_ms",
                                "CoreInferenceDuration_ms",
                                "CoreLoadResultDuration_ms",
                                "CorePostprocessDuration_ms",
                                "PythonPreprocessDuration_ms",
                                "DeviceInferenceDuration_ms",
                                "DeviceTemperature_C",
                                "DeviceFrequency_MHz"
                            ];
                            // Add each timing key found in the result object.
                            timingKeys.forEach((key) => {
                                if (timingObject[key] !== undefined) {
                                    this.timeStats.addNewStat(key, timingObject[key]);
                                }
                            });
                        }
                        this.timeStats.addNewStat("FrameTotalDuration_ms", performance.now() - frameStartTime);
                    }

                    if (this.callback == null) {
                        this.log('onmessage: Pushing to resultQ with info:', info);
                        this.resultQ.push(combinedResult);
                    } else {
                        this.callback(combinedResult, info);
                    }
                } else {
                    this.log('onmessage: Message from server received but this.initialized == false!');
                }
            }).catch(error => {
                // Reset lastProcessedMessage to avoid blocking future messages
                this.lastProcessedMessage = Promise.resolve();
                throw new DGError(`Error in onmessage: ${error}`, "ONMESSAGE_ERROR", { error }, "Error in onmessage.");
            });
        };

        this.socket.onerror = (event) => {
            // We temporarily turn these into just console errors
            // This is because CROW errors are not emitted properly yet
            console.error('AIServerModel: WebSocket error observed:', event);
            // throw new DGError("AIServerModel: WebSocket error observed:", "WEBSOCKET_ERROR", { event }, "WebSocket error observed.");
        };
    }

    /**
     * Waits for outstanding frames to be processed.
     * @private
     * @returns {Promise<void>}
     */
    awaitOutsandingFrames() {
        return new Promise((resolve) => {
            const checkInterval = setInterval(() => {
                if (!this.infoQ.empty() || !this.resultQ.empty()) {
                    // Still waiting for the queues to be empty
                } else {
                    clearInterval(checkInterval); // Clear the interval when the condition is met
                    resolve(); // Resolve the promise when both queues are empty
                }
            }, 10); // Check every 10ms
        });
    }

    /**
     * Initializes the WebSocket connection with the server using modelName and modelConfig packet in order to load the model.
     * @private
     * @async
     */
    async initializeSocket() {
        try {
            await this.waitFor(() => this.finishedSettingAdditionalParams, 500);
        } catch (error) {
            console.warn('Setting additional parameters timed out. Some values will be set to default.');
        }

        // this._deviceType is always set when we get here.
        if (!this._deviceType) {
            throw new DGError("Device type is not set. Uh-oh!");
        }

        // Last check for device type / runtime agent compatibility inside this.systemDeviceTypes
        if (!this.systemDeviceTypes.includes(this._deviceType)) {
            // Device type is not supported by the AIServer (this.systemDeviceTypes)
            // However, the model still could have other supported device types (this.supportedDeviceTypes)
            throw new DGError(`Device type ${this._deviceType} is not supported by the AIServer. Please use one of the supported device types: ${this.supportedDeviceTypes}.`, "UNSUPPORTED_DEVICE_TYPE", {}, "An error occurred while setting the device type.", "Please check the device type and try again.");
        }

        // console.log('Finished waiting for additional params to be set. Opening socket with model:', this.modelName, 'and config:', this.modelConfig);
        this.socket = new WebSocket(`${this.serverUrl}/v1/stream`);
        // Load model by sending name + config packet
        this.socket.onopen = () => {
            this.log('AIServerModel initializeSocket(): WebSocket connection opened. Loading model:', this.modelName);
            // this.log('AIServerModel initializeSocket(): sending modelConfig:', this.modelConfig);
            this.socket.send(JSON.stringify({
                name: this.modelName,
                config: this.modelConfig
            }));
        };
        this.initialized = false;
        this.initSocketListeners();
    }

    /**
     * Resets the WebSocket connection.
     * @private
     */
    resetSocket() {
        if (this.socket) {
            this.socket.close();
        }
        this.initializeSocket();
        // Reset dirty flag
        this.dirty = false;
    }


    /////////////////// Internal Parameter Setters / Getters  ///////////////////
    // Internal parameters can be set / get without explicit getter / setter calling:
    // model.overlayShowLabels = false;  // This actually calls the setter method
    // console.log(model.overlayShowLabels);  // This calls the getter method

    // deviceType must either be a string 'RUNTIME/DEVICE' or an array of such strings ['RUNTIME1/DEVICE1', 'RUNTIME2/DEVICE2']
    // Then, it's checked against the system's available devices and only one such device is selected (the first one in the array that passed)
    set deviceType(value) {
        console.log('Entered deviceType setter with value:', value);
        if (!value || (typeof value !== 'string' && !Array.isArray(value))) {
            throw new TypeError("deviceType should be a string or an array of strings. e.g. 'RUNTIME/DEVICE' or ['RUNTIME1/DEVICE1', 'RUNTIME2/DEVICE2'].");
        }

        let currentDevice = this.modelParams.DEVICE[0]['RuntimeAgent'] + '/' + this.modelParams.DEVICE[0]['DeviceType'];
        if (currentDevice === value) {
            console.warn('Device type is already set to:', value);
            // Directly update _deviceType. This is so deviceType passed to constructor will be set properly even if it's identical to model params
            if (!this._deviceType) this._deviceType = value;
            return;
        }
        // console.log('Got here with value:', value);

        const checkDeviceType = (deviceType) => {
            // console.log('Checking device type:', deviceType);
            const agentDevice = deviceType.split('/');
            if (agentDevice.length !== 2) {
                throw new DGError("deviceType should be in the format 'RUNTIME/DEVICE'.", "INVALID_DEVICE_TYPE", {}, "An error occurred while setting the device type.", "Please check the device type and try again.");
            }

            if (this.supportedDeviceTypes.includes(deviceType)) {
                return agentDevice;
            }
            return null;
        };

        const values = Array.isArray(value) ? value : [value];
        let agentDevice = null;

        for (const deviceType of values) {
            agentDevice = checkDeviceType(deviceType);
            if (agentDevice !== null) {
                break; // take the first suitable device type
            }
        }

        if (agentDevice === null) {
            throw new Error(`None of the device types in the list ${values} are supported by the model ${this.modelName}. Supported device types are: ${this.supportedDeviceTypes}.`);
        }

        // Assign the selected runtime and device to the model parameters
        // this.modelParams.RuntimeAgent = agentDevice[0];
        // this.modelParams.DeviceType = agentDevice[1];
        // this.modelParams.dirty = true; // Mark the model parameters as dirty
        this.setModelParameter('RuntimeAgent', agentDevice[0]);
        this.setModelParameter('DeviceType', agentDevice[1]);

        // Directly update _deviceType to the one that was chosen.
        this._deviceType = agentDevice.join('/');

        this.log(`Device type set to ${this._deviceType}`);
    }

    get deviceType() {
        return this._deviceType;
    }

    /**
     * Determines if a system device type matches any of the model's supported device types, considering wildcards.
     * @private
     * @param {Array<string>} modelSupportedTypes - An array of strings representing the device types supported by the model. 
     * Example: ["OPENVINO/*", "TENSORRT/*", "ONNX/*"]
     * @param {Array<string>} systemDeviceTypes - An array of strings representing the device types available on the system.
     * Example: ["OPENVINO/CPU", "TENSORRT/GPU", "ONNX/CPU"]
     * 
     * @returns {Array<string>} - An array of strings representing the intersection of modelSupportedTypes and systemDeviceTypes, 
     * with wildcards considered. 
     * Example: If modelSupportedTypes is ["OPENVINO/*", "TENSORRT/*"] and systemDeviceTypes is ["OPENVINO/CPU", "TENSORRT/GPU"], 
     * it returns ["OPENVINO/CPU", "TENSORRT/GPU"].
     */
    matchSupportedDevices(modelSupportedTypes, systemDeviceTypes) {
        const matchesWildcard = (pattern, type) => {
            const [patternRuntime, patternDevice] = pattern.split('/');
            const [typeRuntime, typeDevice] = type.split('/');

            const runtimeMatches = patternRuntime === '*' || patternRuntime === typeRuntime;
            const deviceMatches = patternDevice === '*' || patternDevice === typeDevice;

            return runtimeMatches && deviceMatches;
        };

        return systemDeviceTypes.filter(systemType =>
            modelSupportedTypes.some(modelType => matchesWildcard(modelType, systemType))
        );
    }

    get supportedDeviceTypes() {
        let modelSupportedTypes;
        try {
            modelSupportedTypes = this.getModelParameter('SupportedDeviceTypes'); // Returns string such as OPENVINO/*, TENSORRT/*, ONNX/*
            modelSupportedTypes = modelSupportedTypes.split(',').map(type => type.trim());
        } catch (err) {
            // if model does not have SupportedDeviceTypes, use systemDeviceTypes
            modelSupportedTypes = this.systemDeviceTypes;
        }

        return this.matchSupportedDevices(modelSupportedTypes, this.systemDeviceTypes);
    }

    /**
     * Sets the label whitelist. Only labels in the whitelist will be shown in the overlay.
     * @type {Array.<string>}
     * @private
     */
    set labelWhitelist(value) {
        if (!Array.isArray(value)) {
            throw new TypeError("labelWhitelist should be an array of strings. e.g. ['cat', 'dog'].");
        }
        for (const label of value) {
            if (typeof label !== 'string') {
                throw new TypeError("All items in labelWhitelist must be strings. e.g. ['cat', 'dog'].");
            }
        }
        this._labelWhitelist = value;
    }

    /**
     * Gets the label whitelist. Only labels in the whitelist will be shown in the overlay.
     * @type {Array.<string>}
     * @private
     */
    get labelWhitelist() {
        return this._labelWhitelist;
    }

    /**
     * Gets the label blacklist. Labels in the blacklist will not be shown in the overlay.
     * @type {Array.<string>}
     * @private
     */
    set labelBlacklist(value) {
        if (!Array.isArray(value)) {
            throw new TypeError("labelBlacklist should be an array of strings. e.g. ['cat', 'dog'].");
        }
        for (const label of value) {
            if (typeof label !== 'string') {
                throw new TypeError("All items in labelBlacklist must be strings. e.g. ['cat', 'dog'].");
            }
        }
        this._labelBlacklist = value;
    }

    /**
     * Sets the label blacklist. Labels in the blacklist will not be shown in the overlay.
     * @type {Array.<string>}
     * @private
     */
    get labelBlacklist() {
        return this._labelBlacklist;
    }


    /////////////////// Display Parameters ///////////////////

    /**
     * Sets the overlay color. The overlay color is used to draw bounding boxes and labels.
     * 
     * @type {Array.<Array.<number>>}
     * @private
     */
    set overlayColor(value) {
        if (!Array.isArray(value)) {
            throw new TypeError("overlayColor should be an array.");
        }
        // Validate if it's a list of [R, G, B] triplets or just a single triplet
        const isValidTriplet = (triplet) => {
            return Array.isArray(triplet) &&
                triplet.length === 3 &&
                triplet.every(color => typeof color === 'number' && color >= 0 && color <= 255);
        };

        if (!isValidTriplet(value)) {
            if (!value.every(isValidTriplet)) {
                throw new TypeError("overlayColor should either be a single [R, G, B] triplet or a list of such triplets.");
            }
        }
        this.configParamsDirty = true;
        this._overlayColor = value;
    }

    /**
     * Gets the overlay color. The overlay color is used to draw bounding boxes and labels.
     * @type {Array.<Array.<number>>}
     * @private
     */
    get overlayColor() {
        return this._overlayColor;
    }

    /**
     * Sets the overlay line width. The overlay line width is used to draw bounding boxes and labels.
     * @type {number}
     * @private
     */
    set overlayLineWidth(value) {
        if (typeof value !== 'number' || value <= 0) {
            throw new TypeError("overlayLineWidth should be a positive number.");
        }
        this.configParamsDirty = true;
        this._overlayLineWidth = value;
    }
    /**
     * Gets the overlay line width. The overlay line width is used to draw bounding boxes and labels.
     * @type {number}
     * @private
     */
    get overlayLineWidth() {
        return this._overlayLineWidth;
    }

    /**
     * Determines whether to show labels in the overlay.
     * @type {boolean}
     * @private
     */
    set overlayShowLabels(value) {
        if (typeof value !== 'boolean') {
            throw new TypeError("overlayShowLabels should be a boolean value.");
        }
        this.configParamsDirty = true;
        this._overlayShowLabels = value;
    }
    /**
     * Gets whether to show labels in the overlay.
     * @type {boolean}
     * @private
     */
    get overlayShowLabels() {
        return this._overlayShowLabels;
    }

    /**
     * Sets whether to show probabilities in the overlay.
     * @type {boolean}
     * @private
     */
    set overlayShowProbabilities(value) {
        if (typeof value !== 'boolean') {
            throw new TypeError("overlayShowProbabilities should be a boolean value.");
        }
        this.configParamsDirty = true;
        this._overlayShowProbabilities = value;
    }
    /**
     * Determines whether to show probabilities in the overlay.
     * @type {boolean}
     * @private
     */
    get overlayShowProbabilities() {
        return this._overlayShowProbabilities;
    }

    // overlayAlpha
    /**
     * Sets the transparency percentage of the overlay.
     * @type {number}
     * @private
     */
    set overlayAlpha(value) {
        if (typeof value !== 'number' || value < 0 || value > 1) {
            throw new TypeError("overlayAlpha should be a number between 0 and 1.");
        }
        this.configParamsDirty = true;
        this._overlayAlpha = value;
    }
    /**
     * Gets the transparency percentage of the overlay.
     * @type {number}
     * @private
     */
    get overlayAlpha() {
        return this._overlayAlpha;
    }

    /**
     * Sets the font scale for the overlay.
     * @type {number}
     * @private
     */
    set overlayFontScale(value) {
        if (typeof value !== 'number' || value <= 0) {
            throw new TypeError("overlayFontScale should be a positive number.");
        }
        this.configParamsDirty = true;
        this._overlayFontScale = value;
    }
    /**
     * Gets the font scale for the overlay.
     * @type {number}
     * @private
     */
    get overlayFontScale() {
        return this._overlayFontScale;
    }

    /////////////////// Input Handling Parameters ///////////////////

    /**
     * Sets the fill color for letterboxing the input image.
     * @type {Array.<number>}
     * @private
     */
    set inputLetterboxFillColor(value) {
        // Validation for single [R, G, B] triplet
        if (!Array.isArray(value) ||
            value.length !== 3 ||
            !value.every(color => typeof color === 'number' && color >= 0 && color <= 255)) {
            throw new TypeError("inputLetterboxFillColor should be a single [R, G, B] triplet.");
        }
        this.configParamsDirty = true;
        this._inputLetterboxFillColor = value;
    }
    /**
     * Gets the fill color for letterboxing the input image.
     * @type {Array.<number>}
     * @private
     */
    get inputLetterboxFillColor() {
        return this._inputLetterboxFillColor;
    }

    /**
     * Sets the method for padding the input image. Can be one of 'stretch', 'letterbox', 'crop-first', or 'crop-last'.
     * @type {string}
     * @private
     */
    set inputPadMethod(value) {
        if (typeof value !== 'string' ||
            !["stretch", "letterbox", "crop-first", "crop-last"].includes(value)) {
            throw new TypeError("inputPadMethod should be one of 'stretch', 'letterbox', 'crop-first', or 'crop-last'.");
        }
        this.configParamsDirty = true;
        this._inputPadMethod = value;
    }
    /**
     * Gets the method for padding the input image. Can be one of 'stretch', 'letterbox', 'crop-first', or 'crop-last'.
     * @type {string}
     * @private
     */
    get inputPadMethod() {
        return this._inputPadMethod;
    }

    /**
     * Sets whether to save the model image in the result object.
     * @type {boolean}
     * @private
     */
    set saveModelImage(value) {
        if (typeof value !== 'boolean') {
            throw new TypeError("saveModelImage should be a boolean value.");
        }
        this.configParamsDirty = true;
        this._saveModelImage = value;
    }
    /**
     * Gets whether to save the model image in the result object.
     * @type {boolean}
     * @private
     */
    get saveModelImage() {
        return this._saveModelImage;
    }

    /**
     * Sets the percentage of the input image to crop. The value should be between 0 and 1.
     * @type {number}
     * @private
     */
    set inputCropPercentage(value) {
        if (typeof value !== 'number' || value < 0 || value > 1) {
            throw new TypeError("inputCropPercentage should be a number between 0 and 1.");
        }
        this.configParamsDirty = true;
        this._inputCropPercentage = value;
    }
    /**
     * Gets the percentage of the input image to crop. The value should be between 0 and 1.
     * @type {number}
     * @private
     */
    get inputCropPercentage() {
        return this._inputCropPercentage;
    }

    /**
     * Boolean to auto scale font / line width based on image size.
     * @type {boolean}
     * @private
     */
    set autoScaleDrawing(value) {
        if (typeof value !== 'boolean') {
            throw new TypeError("autoScaleDrawing should be a boolean value.");
        }
        this.configParamsDirty = true;
        this._autoScaleDrawing = value;
        console.log('Set autoScaleDrawing:', value);
    }

    /**
     * Gets whether to auto scale font / line width based on image size.
     * @type {boolean}
     * @private
     */
    get autoScaleDrawing() {
        return this._autoScaleDrawing;
    }

    /////////////////// Inference Parameters ///////////////////
    // These just wrap setModelParameter() with input handling

    /**
     * Sets the cloud token. The value should be a string.
     * @type {string}
     * @private
     */
    set cloudToken(value) {
        if (typeof value !== 'string') {
            throw new TypeError("cloudToken should be a string.");
        }
        this.setModelParameter('CloudToken', value);
    }
    /**
     * Gets the cloud token. The value is a string.
     * @type {string}
     * @private
     */
    get cloudToken() {
        return this.getModelParameter('CloudToken');
    }

    /**
     * Sets the cloud URL. The value should be a string.
     * @type {string}
     * @private
     */
    set cloudURL(value) {
        if (typeof value !== 'string') {
            throw new TypeError("cloudURL should be a string.");
        }
        // this.setModelParameter('CloudURL', value);

        // Parse the URL and reconstruct it without the path (patch for HttpServer not expecting a path)
        try {
            const urlObj = new URL(value);
            const urlWithoutPath = urlObj.origin; // origin includes protocol and host
            this.setModelParameter('CloudURL', urlWithoutPath);
        } catch (e) {
            throw new DGError("Invalid URL provided.", "INVALID_URL", {}, "Invalid URL provided.");
        }
    }
    /**
     * Gets the cloud URL. The value is a string.
     * @type {string}
     * @private
     */
    get cloudURL() {
        return this.getModelParameter('CloudURL');
    }

    /**
     * Sets the output confidence threshold. The value should be a number between 0 and 1.
     * @type {number}
     * @private
     */
    set outputConfidenceThreshold(value) {
        if (typeof value !== 'number' || value < 0 || value > 1) {
            throw new TypeError("outputConfidenceThreshold should be a number between 0 and 1.");
        }
        this.setModelParameter('OutputConfThreshold', value);
    }
    /**
     * Gets the output confidence threshold. The value is a number between 0 and 1.
     * @type {number}
     * @private
     */
    get outputConfidenceThreshold() {
        return this.getModelParameter('OutputConfThreshold');
    }

    /**
     * Sets the maximum number of detections. The value should be an integer.
     * @type {number}
     * @private
     */
    set outputMaxDetections(value) {
        if (typeof value !== 'number' || !Number.isInteger(value)) {
            throw new TypeError("outputMaxDetections should be an integer.");
        }
        this.setModelParameter('MaxDetections', value);
    }
    /**
     * Gets the maximum number of detections. The value should be an integer.
     * @type {number}
     * @private
     */
    get outputMaxDetections() {
        return this.getModelParameter('MaxDetections');
    }

    /**
     * Sets the maximum number of detections per class. The value should be an integer.
     * @type {number}
     * @private
     */
    set outputMaxDetectionsPerClass(value) {
        if (typeof value !== 'number' || !Number.isInteger(value)) {
            throw new TypeError("outputMaxDetectionsPerClass should be an integer.");
        }
        this.setModelParameter('MaxDetectionsPerClass', value);
    }
    /**
     * Sets the maximum number of detections per class. The value should be an integer.
     * @type {number}
     * @private
     */
    get outputMaxDetectionsPerClass() {
        return this.getModelParameter('MaxDetectionsPerClass');
    }

    /**
     * Sets the maximum number of classes per detection. The value should be an integer.
     * @type {number}
     * @private
     */
    set outputMaxClassesPerDetection(value) {
        if (typeof value !== 'number' || !Number.isInteger(value)) {
            throw new TypeError("outputMaxClassesPerDetection should be an integer.");
        }
        this.setModelParameter('MaxClassesPerDetection', value);
    }
    /**
     * Sets the maximum number of classes per detection. The value should be an integer.
     * @type {number}
     * @private
     */
    get outputMaxClassesPerDetection() {
        return this.getModelParameter('MaxClassesPerDetection');
    }

    /**
     * Sets the non-maximum suppression threshold. The value should be a number between 0 and 1.
     * @type {number}
     * @private
     */
    set outputNmsThreshold(value) {
        if (typeof value !== 'number' || value < 0 || value > 1) {
            throw new TypeError("outputNmsThreshold should be a number between 0 and 1.");
        }
        this.setModelParameter('OutputNMSThreshold', value);
    }
    /**
     * Gets the non-maximum suppression threshold. The value should be a number between 0 and 1.
     * @type {number}
     * @private
     */
    get outputNmsThreshold() {
        return this.getModelParameter('OutputNMSThreshold');
    }

    /**
     * Sets the output pose threshold. The value should be a number between 0 and 1.
     * @type {number}
     * @private
     */
    set outputPoseThreshold(value) {
        if (typeof value !== 'number' || value < 0 || value > 1) {
            throw new TypeError("outputPoseThreshold should be a number between 0 and 1.");
        }
        this.setModelParameter('OutputConfThreshold', value);  // set OutputConfThreshold with the value (not pose threshold)
    }
    /**
     * Gets the output pose threshold. The value should be a number between 0 and 1.
     * @type {number}
     * @private
     */
    get outputPoseThreshold() {
        return this.getModelParameter('OutputConfThreshold');
    }

    /**
     * Sets the output post-process type. The value should be one of the specified valid string values.
     * @type {string}
     * @private
     */
    set outputPostprocessType(value) {
        const validValues = ["Classification", "Detection", "DetectionYolo", "PoseDetection", "HandDetection", "FaceDetect", "Segmentation", "BodyPix", "Python", "None"];
        if (typeof value !== 'string' || !validValues.includes(value)) {
            throw new TypeError("outputPostprocessType should be one of the specified valid string values.");
        }
        this.setModelParameter('OutputPostprocessType', value);
    }
    /**
     * Gets the output post-process type. The value should be one of the specified valid string values.
     * @type {string}
     * @private
     */
    get outputPostprocessType() {
        return this.getModelParameter('OutputPostprocessType');
    }

    /**
     * Sets the output top K value. The value should be an integer.
     * @type {number}
     * @private
     */
    set outputTopK(value) {
        if (typeof value !== 'number' || !Number.isInteger(value)) {
            throw new TypeError("outputTopK should be an integer.");
        }
        this.setModelParameter('OutputTopK', value);
    }
    /**
     * Gets the output top K value. The value should be an integer.
     * @type {number}
     * @private
     */
    get outputTopK() {
        return this.getModelParameter('OutputTopK');
    }

    /**
     * Sets whether to use regular non-maximum suppression. The value should be a boolean.
     * @type {boolean}
     * @private
     */
    set outputUseRegularNms(value) {
        if (typeof value !== 'boolean') {
            throw new TypeError("outputUseRegularNms should be a boolean.");
        }
        this.setModelParameter('UseRegularNMS', value);
    }
    /**
     * Gets whether to use regular non-maximum suppression. The value should be a boolean.
     * @type {boolean}
     * @private
     */
    get outputUseRegularNms() {
        return this.getModelParameter('UseRegularNMS');
    }

    set measureTime(value) {
        if (typeof value !== 'boolean') {
            throw new DGError(`Value of measureTime (${value}) is not of type Boolean.`, "TYPE_ERROR");
        }
        this._measureTime = value;
        this.timeStats = value ? new StatsDict() : null;

        this.setModelParameter('MeasureTime', value);
    }

    get measureTime() {
        return this._measureTime;
    }


    /**
     * Waits for a condition to be met.
     * @private
     * @param {Function} conditionFunction - The function representing the condition to wait for.
     * @param {number} [timeout=1000] - The maximum time to wait.
     * @param {number} [interval=10] - The interval between checks.
     * @returns {Promise<void>}
     */
    waitFor(conditionFunction, timeout = 1000, interval = 10) {
        const poll = resolve => {
            if (conditionFunction()) resolve();
            else if (timeout > 0) setTimeout(() => poll(resolve), interval);
            else throw new DGError("Timed out waiting.", "WAIT_TIMEOUT", {}, "Timed out waiting.");
        };

        return new Promise(poll);
    }

    /**
     * Initializes the preprocessor.
     * @async
     * @private
     */
    async initializePreProcessor() {
        // First ensure that model instance is fully initialized with params
        if (!this.initialized) await this.waitFor(() => this.initialized);

        this.log('(re)setting preprocessor...');
        this.preProcessor = null;
        this.preProcessor = new PreProcess(this.modelParams, this.constructOverlayConfig());
    }

    /**
     * Initializes the postprocessor.
     * @async
     * @private
     */
    async initializePostProcessor() {
        // First ensure that model instance is fully initialized with params
        if (!this.initialized) await this.waitFor(() => this.initialized);

        this.log('(re)setting postprocessor...');
        this.postProcessor = null;
        this.postProcessor = new PostProcess(this.modelParams, this.constructOverlayConfig());
    }

    /**
     * Initializes both the preprocessor and postprocessor.
     * @async
     * @private
     */
    async initPrePostProcessors() {
        await this.initializePreProcessor();
        await this.initializePostProcessor();

        this.configParamsDirty = false;
    }

    /**
     * Updates a key within modelParams and sets the dirty flag. Ultimately, designed only to modify leaf nodes with primitive values within the JSON used.
     * @async
     * @private
     * @param {string} key - The key of the parameter to set.
     * @param {any} value - The value of the parameter to set.
     */
    async setModelParameter(key, value) {
        this.log('setModelParameter(). Attempting to update:', key, 'to value:', value);
        let updated = false;
        try {
            // Ensure modelParams exists
            if (!this.modelParams) {
                throw new DGError("Model parameters are not initialized!", "MODEL_PARAMETERS_NOT_INITIALIZED", {}, "Model parameters are not initialized. Please initialize the model parameters before updating.");
            }
            // Check for top-level key
            if (Object.prototype.hasOwnProperty.call(this.modelParams, key)) {
                this.log('Top-level key found! Updating key to:', value);
                this.modelParams[key] = value;

                if (!this.modelConfig) {
                    this.modelConfig = {};
                }
                this.modelConfig[key] = value;

                this.log('Updated modelConfig for top-level key:', this.modelConfig);
                this.dirty = true;
                updated = true;
            } else if (key === 'CloudToken' || key === 'CloudURL' || key === 'MeasureTime') {
                // this.log('Cloud token bypass-patching in new key:', key);
                if (!this.modelConfig) {
                    this.modelConfig = {};
                }

                // Add the key/value pair to modelParams and modelConfig
                this.modelParams[key] = value;
                this.modelConfig[key] = value;

                // console.log('Updated modelParams and modelConfig for key:', key, 'with value:', value);
                this.dirty = true;
                updated = true;

            } else {
                // Try setting the value for each top-level key
                for (const topLevelKey in this.modelParams) {
                    if (this.modelParams[topLevelKey] && this.modelParams[topLevelKey][0] && Object.prototype.hasOwnProperty.call(this.modelParams[topLevelKey][0], key)) {
                        this.log('Key found! Updating key to:', value);
                        // Updating local copy of model params is now done on confirmation message from websocket in initializeSocket()

                        // Need to update local copy anyway, even if it will be overwritten by next lazy reload upon predict()
                        // This is so querying the model params after user changes parameter without performing inference
                        // will yield expected new model params, not old unchanged params object
                        this.log('setModelParameter(): Updating local modelParams copy, setting', this.modelParams[topLevelKey][0][key], 'to', value);
                        this.modelParams[topLevelKey][0][key] = value;


                        if (!this.modelConfig[topLevelKey]) {
                            this.modelConfig[topLevelKey] = [];
                            this.modelConfig[topLevelKey].push({});
                        }

                        if (this.modelConfig[topLevelKey][0]) {
                            this.modelConfig[topLevelKey][0][key] = value;
                        } else {
                            const newEntry = {};
                            newEntry[key] = value;
                            this.modelConfig[topLevelKey].push(newEntry);
                        }
                        this.log('Updated modelConfig:', this.modelConfig);

                        this.dirty = true;
                        updated = true;
                        break;
                    }
                }
            }
        } catch (error) {
            throw new DGError(`Failed to set a parameter: ${error}`, "SET_PARAMETER_FAILED", {}, "Failed to set a parameter.");
        }

        // If not updated, log an error
        if (!updated) {
            throw new DGError(`Failed to update the parameter. Key "${key}" not found!`, "UPDATE_PARAMETER_FAILED", { key }, `Failed to update the parameter "${key}". Please make sure the key exists.`);
        }
    }

    /**
     * Retrieves a model parameter from modelParams JSON associated with this model instance.
     * @private
     * @param {string} key - The key of the parameter to retrieve.
     * @returns {any} The value of the parameter.
     */
    getModelParameter(key) {
        this.log('Entered getModelParameter(). Querying value for key:', key);

        if (!this.modelParams) {
            throw new DGError("Model parameters are not initialized!", "MODEL_PARAMETERS_NOT_INITIALIZED", {}, "Model parameters are not initialized. Please initialize the model parameters before querying.");
        }

        // Check for top-level key
        if (Object.prototype.hasOwnProperty.call(this.modelParams, key)) {
            this.log('Top-level key found. Value:', this.modelParams[key]);
            return this.modelParams[key];
        } else {
            // Check in nested structures
            for (const topLevelKey in this.modelParams) {
                if (this.modelParams[topLevelKey] && this.modelParams[topLevelKey][0] && Object.prototype.hasOwnProperty.call(this.modelParams[topLevelKey][0], key)) {
                    this.log('Key found in nested structure. Value:', this.modelParams[topLevelKey][0][key]);
                    return this.modelParams[topLevelKey][0][key];
                }
            }
        }

        throw new DGError(`Failed to get the parameter. Key "${key}" not found!`, "GET_PARAMETER_FAILED", { key }, `Failed to get the parameter "${key}". Please make sure the key exists.`);
    }


    /**
     * Returns a read-only copy of the model parameters.
     * @returns {Object} The model parameters.
     */
    modelInfo() {
        if (this.socket && this.modelParams) {
            return JSON.parse(JSON.stringify(this.modelParams));
        } else {
            throw new DGError("Model parameters are not yet initialized for this model!", "MODEL_PARAMETERS_NOT_INITIALIZED", {}, "Model parameters are not yet initialized for this model!");
        }
    }

    /**
     * Returns the label dictionary for this AIServerModel instance.
     * @returns {Object} The label dictionary.
     */
    labelDictionary() {
        return this.labels;
    }


    /**
     * Overlay the result onto the image frame and display it on the canvas.
     * @async
     * @param {Object} combinedResult - The result object combined with the original image frame. This is directly received from `predict` or `predict_batch`
     * @param {string|HTMLCanvasElement} outputCanvasName - The canvas to draw the image onto. Either the canvas element or the ID of the canvas element.
     * @param {boolean} [justResults=false] - Whether to show only the result overlay without the image frame.
     */
    async displayResultToCanvas(combinedResult, outputCanvasName, justResults = false) {
        this.log('Entered displayResultToCanvas()');

        // Handle incorrect / empty result object
        if (!combinedResult || !combinedResult.result) {
            throw new DGError('displayResultToCanvas(): Invalid or empty result object, returning', "INVALID_RESULT_OBJECT", {}, "Invalid or empty result object. Please make sure the result object is valid.");
        }

        // If !combinedResult.imageFrame then it means the input was a video element
        // allow it, just set justResults to true
        if (!combinedResult.imageFrame) {
            justResults = true;
            this.log('displayResultToCanvas(): No imageFrame found in combinedResult most likely due to video element inference. Setting justResults to true.');
        }

        const { result, imageFrame } = combinedResult;  // Destructure to extract result and imageFrame

        let canvas;
        // Input validation for outputCanvasName
        if (!outputCanvasName || typeof outputCanvasName !== 'string' || outputCanvasName.trim() === '') {
            // also accept HTMLCanvasElement 
            if (!(outputCanvasName instanceof HTMLCanvasElement)) {
                throw new DGError('Invalid outputCanvasName parameter', "INVALID_OUTPUT_CANVAS_NAME", {}, "Invalid outputCanvasName parameter. Please provide a valid outputCanvasName.");
            } else {
                canvas = outputCanvasName;
            }
        }
        if (!canvas) {
            canvas = document.getElementById(outputCanvasName);
        }

        try {
            // Check result for errors
            const errorMsg = this.errorCheck(result);
            if (errorMsg) {
                throw new DGError(`Error in result: ${errorMsg}`, "RESULT_ERROR", { errorMsg }, "Error in result. Please check the result for errors.");
            }
            // letterbox details attached to result already in onmessage
            this.postProcessor.displayResultToCanvas(imageFrame, result, canvas, justResults);
        } catch (error) {
            throw new DGError("Error in parsing result: ", "PARSE_RESULT_ERROR", {}, "Error in parsing result.");
        }
    }

    /**
     * Processes the original image and draws the results on it, return png image with overlayed results.
     * @async
     * @param {Object} combinedResult - The result object combined with the original image frame.
     * @returns {Promise<Blob>} The processed image file as a Blob of a PNG image.
     */
    async processImageFile(combinedResult) {
        this.log('Entered processImageFile()');

        const { result, imageFrame } = combinedResult;

        try {
            // Check result for errors
            const errorMsg = this.errorCheck(result);
            if (errorMsg) {
                throw new DGError(`Error in result: ${errorMsg}`, "RESULT_ERROR", { errorMsg }, "Error in result. Please check the result for errors.");
            }
            if (this.configParamsDirty) {
                await this.initPrePostProcessors();
            }
            // letterbox details attached to result already in onmessage
            return this.postProcessor.processImageFile(imageFrame, result);
        } catch (error) {
            throw new DGError("Error in processImageFile: ", "PROCESS_IMAGE_FILE_ERROR", {}, "Error in processImageFile.");
        }
    }

    /**
     * Helper function to display image in desired canvas while keeping the aspect ratio.
     * @private
     * @async
     * @param {Blob|File|string|HTMLImageElement|HTMLVideoElement|HTMLCanvasElement|ArrayBuffer} imageFile - The input image.
     * @param {string} outputCanvasName - The name of the canvas to display the image on.
     */
    async showImg(imageFile, outputCanvasName) {
        this.log('Entered showImg()');
        // Input frame validation / conversion
        let imageFrame = await this.validateAndConvertInputFrame(imageFile);
        // Input validation for outputCanvasName
        if (!outputCanvasName || typeof outputCanvasName !== 'string' || outputCanvasName.trim() === '') {
            throw new DGError('Invalid outputCanvasName parameter', "INVALID_OUTPUT_CANVAS_NAME", {}, "Invalid outputCanvasName parameter. Please provide a valid outputCanvasName.");
        }
        try {
            if (this.configParamsDirty) {
                await this.initPrePostProcessors();
            }
            return this.postProcessor.showImg(imageFrame, outputCanvasName);
        } catch (error) {
            throw new DGError("Error in showImg: ", "SHOW_IMAGE_ERROR", {}, "Error in showImg.");
        }
    }

    /**
     * Checks the server response for errors, similar to c++ errorCheck function.
     * @private
     * @param {Object} response - The server response.
     * @returns {string} The error message, if any.
     */
    errorCheck(response) {
        // console.log('Entered errorCheck with result:', JSON.stringify(response));
        // let startTime = performance.now();

        if (!response)
            return "response JSON is null!";
        // Check for the success flag
        if (Object.prototype.hasOwnProperty.call(response, 'success')) {
            if (!response.success) {
                let msg = Object.prototype.hasOwnProperty.call(response, 'msg') ? response.msg : "unspecified error";
                throw new DGError(msg, "RESPONSE_ERROR", { msg }, "Error in server response. Please check the server response for errors.");
            }
        }

        // also add check for the string '[ERROR]' inside the first 25 characters of the stringified response
        if (JSON.stringify(response).substring(0, 25).includes('[ERROR]')) {
            // We have to parse the response to get the error message as well
            return new DGError("Error in response: " + response, "RESPONSE_ERROR", { response }, "Error in response.");
        }

        // console.log('errorCheck took', performance.now() - startTime, 'ms.');
        return ""; // no error
    }

    /**
     * Waits for the WebSocket connection to be established using promises.
     * @async
     * @private
     * @returns {Promise<void>}
     */
    waitForSocketConnection() {
        return new Promise((resolve, reject) => {
            const maxWait = this.MAX_SOCKET_WAIT_MS;
            const intervalTime = 50;
            let elapsedWait = 0;

            const checkConnection = () => {
                if (this.socket && this.socket.readyState === WebSocket.OPEN) {
                    resolve();
                } else if (elapsedWait >= maxWait) {
                    reject(new DGError('Cannot establish WebSocket connection.', "WEBSOCKET_CONNECTION_FAILED", {}, "Failed to establish WebSocket connection."));
                } else {
                    elapsedWait += intervalTime;
                    setTimeout(checkConnection, intervalTime);
                }
            };

            checkConnection();
        });
    }

    /**
     * Creates a promise with a timeout and cancellation handling. Used for mutex lock timeouts.
     * @private
     * @param {number} duration - The duration of the timeout.
     * @param {Function} onCancel - The function to call on cancellation.
     * @returns {Promise<void>} The timeout promise.
     */
    timeoutPromise(duration, onCancel) {
        let timeoutId;
        const promise = new Promise((resolve, reject) => {
            timeoutId = setTimeout(() => {
                reject(new DGError('Mutex lock timeout exceeded', "MUTEX_LOCK_TIMEOUT", {}, "Mutex lock timeout exceeded."));
                onCancel();
            }, duration);
        });
        // Attach the cancel method
        promise.cancel = () => {
            clearTimeout(timeoutId);
        };
        return promise;
    }


    /**
     * Cleans up resources and closes the WebSocket connection. 
     * Does so by following a destructor-like pattern which is manually called by the user.
     * Makes sure to close the WebSocket connection, stop all inferences, remove the listeners, clear async queues, and nullify all references. <br>
     * Call this whenever switching models or when the model instance is no longer needed.
     * @async
     */
    async cleanup() {
        // Set poison flag to stop further inferences
        this.poison = true;

        // Dumnmify WebSocket event listeners
        if (this.socket) {
            this.socket.onmessage = () => { };
            this.socket.onerror = () => { };
            this.socket.onopen = () => { };
            this.socket.onclose = () => { };
        }

        // Close WebSocket connection
        if (this.socket && this.socket.readyState === WebSocket.OPEN) {
            this.socket.close();
        }

        // Clear Async Queues
        if (this.infoQ) await this.infoQ.clear();
        if (this.resultQ) await this.resultQ.clear();

        // Nullify references
        this.preProcessor = null;
        this.postProcessor = null;
        this.mutex = null;
        this.infoQ = null;
        this.resultQ = null;

        // Check and resolve/reject outstanding promises
        // if (this.lastProcessedMessage && this.lastProcessedMessage instanceof Promise) {
        // this.lastProcessedMessage.then(() => {}, () => {});
        // }

        // Reset internal states and flags
        this.initialized = false;
    }

    // Adding some methods for use with stats dict
    /**
     * Resets the stats dict to an empty dict
     */
    resetTimeStats() {
        // if time stats is null we're reinitializing it anyways, so no need for guards I think
        this.timeStats = new StatsDict();
    }

    /**
     * Returns the stats dict to the user
     */
    getTimeStats() {
        if (this.timeStats) {
            return String(this.timeStats);
        }
        throw new DGError("Time stats object not found.", "INTERNAL_ERROR");
    }
}



// Export the class for use in other files
export default AIServerModel;