Postprocessor Module
degirum.postprocessor.ClassificationResults
Bases: InferenceResults
InferenceResult class implementation for classification results type
degirum.postprocessor.ClassificationResults.image_overlay
property
Image with AI inference results drawn. Image type is defined by the selected graphical backend. Each time this property is accessed, new overlay image object is created and all overlay details are redrawn according to the current settings of overlay_*** properties.
degirum.postprocessor.ClassificationResults.overlay_show_labels_below
property
writable
Specifies if overlay labels should be drawn below the image or on image itself
degirum.postprocessor.ClassificationResults.__str__()
Convert inference results to string
degirum.postprocessor.DetectionResults
Bases: InferenceResults
InferenceResult class implementation for detection results type
degirum.postprocessor.DetectionResults.image_overlay
property
Image with AI inference results drawn. Image type is defined by the selected graphical backend.
degirum.postprocessor.DetectionResults.__str__()
Convert inference results to string
degirum.postprocessor.DetectionResults.generate_overlay_color(model_params, label_dict)
staticmethod
Overlay colors generator.
Returns:
Type | Description |
---|---|
list
|
general overlay color data for segmentation results |
degirum.postprocessor.Hand_DetectionResults
Bases: InferenceResults
InferenceResult class implementation for pose detection results type
degirum.postprocessor.Hand_DetectionResults.image_overlay
property
Image with AI inference results drawn. Image type is defined by the selected graphical backend.
degirum.postprocessor.Hand_DetectionResults.__str__()
Convert inference results to string
degirum.postprocessor.InferenceResults
Inference results container class.
This class is a base class for a set of classes designed to handle inference results of particular model types such as classification, detection etc.
Note
You never construct model objects yourself. Objects of those classes are returned by various predict methods of degirum.model.Model class.
degirum.postprocessor.InferenceResults.image
property
Original image.
Returned image object type is defined by the selected graphical backend (see degirum.model.Model.image_backend).
degirum.postprocessor.InferenceResults.image_model
property
Model input image data: image converted to AI model input specifications.
Image type is raw binary array.
degirum.postprocessor.InferenceResults.image_overlay
property
Image with AI inference results drawn on a top of original image.
Drawing details depend on the inference result type:
- For classification models the list of class labels with probabilities is printed below the original image.
- For object detection models bounding boxes of detected object are drawn on the original image.
- For pose detection models detected keypoints and keypoint connections are drawn on the original image.
- For segmentation models detected segments are drawn on the original image.
Returned image object type is defined by the selected graphical backend (see degirum.model.Model.image_backend).
degirum.postprocessor.InferenceResults.info
property
Input data frame information object.
degirum.postprocessor.InferenceResults.overlay_alpha: float
property
writable
Alpha-blend weight for overlay details.
degirum.postprocessor.InferenceResults.overlay_color
property
writable
Color for inference results drawing on overlay image.
3-element RGB tuple or list of 3-element RGB tuples.
degirum.postprocessor.InferenceResults.overlay_fill_color: tuple
property
writable
Image fill color in case of image padding.
3-element RGB tuple.
degirum.postprocessor.InferenceResults.overlay_font_scale: float
property
writable
Font scale to use for overlay text.
degirum.postprocessor.InferenceResults.overlay_line_width: int
property
writable
Line width in pixels for inference results drawing on overlay image.
degirum.postprocessor.InferenceResults.overlay_show_labels: bool
property
writable
Specifies if class labels should be drawn on overlay image.
degirum.postprocessor.InferenceResults.overlay_show_probabilities: bool
property
writable
Specifies if class probabilities should be drawn on overlay image.
degirum.postprocessor.InferenceResults.results: list
property
Inference results list.
Each element of the list is a dictionary containing information about one inference result. The dictionary contents depends on the AI model.
For classification models each inference result dictionary contains the following keys:
category_id
: class numeric ID.label
: class label string.score
: class probability.
Example:
[
{'category_id': 0, 'label': 'cat', 'score': 0.99},
{'category_id': 1, 'label': 'dog', 'score': 0.01}
]
For multi-label classification models each inference result dictionary contains the following keys:
classifier
: object class string.results
: list of class labels and its scores. Scores are optional.
The results
list element is a dictionary with the following keys:
label
: class label string.score
: optional class label probability.
Example:
[
{
'classifier': 'vehicle color',
'results': [
{'label': 'red', 'score': 0.99},
{'label': 'blue', 'score': 0.01}
]
},
{
'classifier': 'vehicle type',
'results': [
{'label': 'car', 'score': 0.99},
{'label': 'truck', 'score': 0.01}
]
}
]
For object detection models each inference result dictionary may contain the following keys:
category_id
: detected object class numeric ID.label
: detected object class label string.score
: detected object probability.bbox
: detected object bounding box list[xtop, ytop, xbot, ybot]
.landmarks
: optional list of keypoints or landmarks. It is the list of dictionaries, one per each keypoint/landmark.mask
: optinal dictionary of run-length encoded (RLE) object segmentation mask array representation.
The landmarks
list is defined for special cases like pose detection of face points detection results.
Each landmarks
list element is a dictionary with the following keys:
category_id
: keypoint numeric ID.label
: keypoint label string.score
: keypoint detection probability.landmark
: keypoint coordinate list[x,y]
.connect
: optional list of IDs of connected keypoints.
The mask
dictionary is defined for the special case of object segmentation results, with the following keys:
height
: height of segmentation mask arraywidth
: width of segmentation mask arraydata
: string representation of a buffer of unsigned 32-bit integers carrying the RLE segmentation mask array.
The object detection keys (bbox
, score
, label
, and category_id
) must be either all present or all absent.
In the former case the result format is suitable to represent pure object detection results.
In the later case, one of the following keys must be present:
- the
landmarks
key - the
mask
key
The following statements are then true:
- If the
landmarks
key is present, the result format is suitable to represent pure landmark detection results, such as pose detection. - If the
mask
key is present, the result format is suitable to represent pure segmentation results. If, optionally, thecategory_id
key is also present, the result format is suitable to represent semantic segmentation results.
When both object detection keys and the landmarks
key are present, the result format is suitable to represent mixed model results,
when the model detects not only object bounding boxes, but also keypoints/landmarks within the bounding box.
When both object detection keys and the mask
key are present, the result format is suitable to represent mixed model results,
when the model detects not only object bounding boxes, but also segmentation masks within the bounding box (i.e. instance segmentation).
Example of pure object detection results:
[
{'category_id': 0, 'label': 'cat', 'score': 0.99, 'bbox': [10, 20, 100, 200]},
{'category_id': 1, 'label': 'dog', 'score': 0.01, 'bbox': [200, 100, 300, 400]}
]
Example of landmark object detection results:
[
{
'landmarks': [
{'category_id': 0, 'label': 'Nose', 'score': 0.99, 'landmark': [10, 20]},
{'category_id': 1, 'label': 'LeftEye', 'score': 0.98, 'landmark': [15, 25]},
{'category_id': 2, 'label': 'RightEye', 'score': 0.97, 'landmark': [18, 28]}
]
}
]
Example of segmented object detection results:
For hand palm detection models each inference result dictionary contains the following keys:
score
: probability of detected hand.handedness
: probability of right hand.landmarks
: list of dictionaries, one per each hand keypoint.
Each landmarks
list element is a dictionary with the following keys:
label
: classified object class label.category_id
: classified object class index.landmark
: landmark point coordinate list[x, y, z]
.world_landmark
: metric world landmark point coordinate list[x, y, z]
.connect
: list of adjacent landmarks indexes.
Example:
[
{
'score': 0.99,
'handedness': 0.98,
'landmarks': [
{
'label': 'Wrist',
'category_id': 0,
'landmark': [10, 20, 30],
'world_landmark': [10, 20, 30],
'connect': [1]
},
{
'label': 'Thumb',
'category_id': 1,
'landmark': [15, 25, 35],
'world_landmark': [15, 25, 35],
'connect': [0]
}
]
}
]
For segmentation models inference result is a single-element list. That single element is a dictionary,
containing single key data
. The value of this key is 2D numpy array of integers, where each integer value
represents a class ID of the corresponding pixel. The class IDs are defined by the model label dictionary.
Example:
degirum.postprocessor.InferenceResults.type: str
property
Inference result type: one of
"classification"
"detection"
"pose detection"
"segmentation"
degirum.postprocessor.InferenceResults.__init__(*, model_params, input_image=None, model_image=None, inference_results, draw_color=(255, 255, 128), line_width=3, show_labels=True, show_probabilities=False, alpha='auto', font_scale=1.0, fill_color=(0, 0, 0), frame_info=None, conversion, label_dictionary={})
Constructor.
Note
You never construct InferenceResults
objects yourself -- the ancestors of this class are returned
as results of AI inferences from degirum.model.Model.predict, degirum.model.Model.predict_batch,
and degirum.model.Model.predict_dir methods.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_params |
ModelParams
|
Model parameters object as returned by degirum.model.Model.model_info. |
required |
input_image |
any
|
Original input data. |
None
|
model_image |
any
|
Input data converted per AI model input specifications. |
None
|
inference_results |
list
|
Inference results data. |
required |
draw_color |
tuple
|
Color for inference results drawing on overlay image. |
(255, 255, 128)
|
line_width |
int
|
Line width in pixels for inference results drawing on overlay image. |
3
|
show_labels |
bool
|
True to draw class labels on overlay image. |
True
|
show_probabilities |
bool
|
True to draw class probabilities on overlay image. |
False
|
alpha |
Union[float, str]
|
Alpha-blend weight for overlay details. |
'auto'
|
font_scale |
float
|
Font scale to use for overlay text. |
1.0
|
fill_color |
tuple
|
RGB color tuple to use for filling if any form of padding is used. |
(0, 0, 0)
|
frame_info |
any
|
Input data frame information object. |
None
|
conversion |
Callable
|
Coordinate conversion function accepting two arguments |
required |
label_dictionary |
dict[str, str]
|
Model label dictionary. |
{}
|
degirum.postprocessor.InferenceResults.__str__()
Conversion to string
degirum.postprocessor.InferenceResults.generate_colors()
staticmethod
Generate a list of unique RGB color tuples.
degirum.postprocessor.InferenceResults.generate_overlay_color(model_params, label_dict)
staticmethod
Overlay colors generator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_params |
ModelParams
|
Model parameters. |
required |
label_dict |
dict
|
Model labels dictionary. |
required |
Returns:
Type | Description |
---|---|
Union[list, tuple]
|
Overlay color tuple or list of tuples. |
degirum.postprocessor.MultiLabelClassificationResults
Bases: InferenceResults
InferenceResult class implementation for multi-label classification results type
degirum.postprocessor.MultiLabelClassificationResults.image_overlay
property
Image with AI inference results drawn. Image type is defined by the selected graphical backend. Each time this property is accessed, new overlay image object is created and all overlay details are redrawn according to the current settings of overlay_*** properties.
degirum.postprocessor.MultiLabelClassificationResults.overlay_show_labels_below
property
writable
Specifies if overlay labels should be drawn below the image or on image itself
degirum.postprocessor.MultiLabelClassificationResults.__str__()
Convert inference results to string
degirum.postprocessor.SegmentationResults
Bases: InferenceResults
InferenceResult class implementation for segmentation results type
degirum.postprocessor.SegmentationResults.image_overlay
property
Image with AI inference results drawn. Image type is defined by the selected graphical backend.
degirum.postprocessor.SegmentationResults.__str__()
Convert inference results to string
degirum.postprocessor.SegmentationResults.generate_overlay_color(model_params, label_dict)
staticmethod
Overlay colors generator.
Returns:
Type | Description |
---|---|
list
|
general overlay color data for segmentation results |
degirum.postprocessor.create_postprocessor(*args, **kwargs)
Create and return postprocessor object.
For the list of arguments see documentation for constructor of degirum.postprocessor.InferenceResults class.
Returns:
Type | Description |
---|---|
InferenceResults
|
InferenceResults instance corresponding to model results type. |