Discover Axelera models
Start with precompiled Axelera models that run out of the box—learn how to pick the right variant for your device.
Estimated read time: 3 minutes
Where the model comes from: Axelera Model Zoo
In the First inference guide, we specified the model by:
model_name="yolov8n_coco--640x640_quant_axelera_metis_1"zoo_url="degirum/axelera"inference_host_address="@local"model_properties={"device_type": ["AXELERA/METIS"]}
That zoo_url points to the Axelera Model Zoo, a curated collection of models precompiled for Axelera Metis hardware. We highlight this zoo because it lets you run examples immediately, without any conversion steps.
Why we start with the Axelera Model Zoo
Instant results: models are precompiled and follow predictable I/O, so examples “just work”
Consistent setup: you focus on
model_name,zoo_url, anddevice_type—everything else stays the sameEasy to swap: change only the
model_nameto try a different model
Example models
# ImageNet classification model
model_spec = ModelSpec(
model_name="yolov8n_imagenet--224x224_quant_axelera_metis_1",
zoo_url="degirum/axelera",
inference_host_address="@local",
model_properties={"device_type": ["AXELERA/METIS"]},
)
# COCO object detection model
model_spec = ModelSpec(
model_name="yolov8n_coco--640x640_quant_axelera_metis_1",
zoo_url="degirum/axelera",
inference_host_address="@local",
model_properties={"device_type": ["AXELERA/METIS"]},
)
# Face detection model
model_spec = ModelSpec(
model_name="yolov8n_relu6_face--640x640_quant_axelera_metis_1",
zoo_url="degirum/axelera",
inference_host_address="@local",
model_properties={"device_type": ["AXELERA/METIS"]},
)Bring your own Axelera model (advanced)
When you’re ready, the advanced guide shows how to:
Package your Axelera-compiled artifacts with a PySDK
model.jsonthat defines inputs, outputs, preprocessing, and postprocessing.Point PySDK to your private or local model zoo.
Rescan the zoo as you add models.
Use the same
ModelSpecpattern—only thezoo_urlandmodel_namechange.
Last updated
Was this helpful?

