LogoLogo
AI HubCommunityWebsite
  • Start Here
  • AI Hub
    • Overview
    • Quickstart
    • Teams
    • Device Farm
    • Browser Inference
    • Model Zoo
      • Hailo
      • Intel
      • MemryX
      • BrainChip
      • Google
      • DeGirum
      • Rockchip
    • View and Create Model Zoos
    • Model Compiler
    • PySDK Integration
  • PySDK
    • Overview
    • Quickstart
    • Installation
    • Runtimes and Drivers
      • Hailo
      • OpenVINO
      • MemryX
      • BrainChip
      • Rockchip
      • ONNX
    • PySDK User Guide
      • Core Concepts
      • Organizing Models
      • Setting Up an AI Server
      • Loading an AI Model
      • Running AI Model Inference
      • Model JSON Structure
      • Command Line Interface
      • API Reference Guide
        • PySDK Package
        • Model Module
        • Zoo Manager Module
        • Postprocessor Module
        • AI Server Module
        • Miscellaneous Modules
      • Older PySDK User Guides
        • PySDK 0.16.0
        • PySDK 0.15.2
        • PySDK 0.15.1
        • PySDK 0.15.0
        • PySDK 0.14.3
        • PySDK 0.14.2
        • PySDK 0.14.1
        • PySDK 0.14.0
        • PySDK 0.13.4
        • PySDK 0.13.3
        • PySDK 0.13.2
        • PySDK 0.13.1
        • PySDK 0.13.0
    • Release Notes
      • Retired Versions
    • EULA
  • DeGirum Tools
    • Overview
      • Streams
        • Streams Base
        • Streams Gizmos
      • Compound Models
      • Result Analyzer Base
      • Inference Support
  • DeGirumJS
    • Overview
    • Get Started
    • Understanding Results
    • Release Notes
    • API Reference Guides
      • DeGirumJS 0.1.3
      • DeGirumJS 0.1.2
      • DeGirumJS 0.1.1
      • DeGirumJS 0.1.0
      • DeGirumJS 0.0.9
      • DeGirumJS 0.0.8
      • DeGirumJS 0.0.7
      • DeGirumJS 0.0.6
      • DeGirumJS 0.0.5
      • DeGirumJS 0.0.4
      • DeGirumJS 0.0.3
      • DeGirumJS 0.0.2
      • DeGirumJS 0.0.1
  • Orca
    • Overview
    • Benchmarks
    • Unboxing and Installation
    • M.2 Setup
    • USB Setup
    • Thermal Management
    • Tools
  • Resources
    • External Links
Powered by GitBook

Get Started

  • AI Hub Quickstart
  • PySDK Quickstart
  • PySDK in Colab

Resources

  • AI Hub
  • Community
  • DeGirum Website

Social

  • LinkedIn
  • YouTube

Legal

  • PySDK EULA
  • Terms of Service
  • Privacy Policy

© 2025 DeGirum Corp.

On this page
  • JSON Model File Naming Conventions
  • Field Descriptions
  • Model Family Names
  • Model Zoo Directory Structure

Was this helpful?

  1. PySDK
  2. PySDK User Guide

Organizing Models

Learn how AI Hub models and model zoos are organized. This page covers JSON model file naming conventions and model zoo directory structure. Local model zoos may follow these conventions.

JSON Model File Naming Conventions

Each JSON model file in a model zoo follows a structured naming convention to maintain consistency and clarity:

<model family name>--[<resolution>_][<density>_][<precision>_][<agent>_][<hardware>_]<version>.json

-- and _ are used as field separators.

<> denotes a field with variable contents.

[] denotes optional fields.

Field Descriptions

Field
Description
Possible Values

model family

The name of the model family

resolution

Input tensor size (optional)

<integer>x<integer>

density

Model density (optional)

pruned, dense

precision

Model calculation precision (optional)

quant, float

agent

DeGirum runtime agent type for inference (optional)

Agent type or multi

hardware

Hardware for model inference (optional)

Device type or multi

version

Version of the compiled model

<integer>

Model Family Names

When naming model families, follow these conventions:

  • Do not use dashes (-). Use underscores (_) instead.

  • Do not use capital letters. All names should be in lowercase.

  • Include the backbone network as a suffix when applicable. For example:

    • posenet_mobilenet_v1

  • Include the network version as a suffix when applicable. For example:

    • mobilenet_v1

  • Different model sizes (such as small or large) should be defined as a suffix when applicable. For example:

    • yolo_v5s (for a small version)

These conventions ensure models are easily identifiable and consistent across AI Hub and local model zoos.

Model Zoo Directory Structure

When you create a model zoo directory, AI models should be placed in their own subdirectory containing all necessary files. AI Hub model zoos on the AI Hub follow this structure by default. Local model zoos can be organized in the same way.

Example: Model Directory Structure

<model_zoo_directory>/
    ├── mobilenet_v2_imagenet--224x224_quant_n2x_orca1_1/
    │   ├── mobilenet_v2_imagenet--224x224_quant_n2x_orca1_1.json
    │   ├── mobilenet_v2_imagenet--224x224_quant_n2x_orca1_1.n2x
    │   └── labels.json  (if required)
    ├── yolov8n_coco--640x640_quant_openvino_1/
    │   ├── yolov8n_coco--640x640_quant_openvino_1.json
    │   ├── yolov8n_coco--640x640_quant_openvino_1.xml
    │   ├── yolov8n_coco--640x640_quant_openvino_1.bin
    │   └── postprocess.py  (if required)
    └── yolov8n_relu6_coco_pose--640x640_quant_tflite_edgetpu_1/
        ├── yolov8n_relu6_coco_pose--640x640_quant_tflite_edgetpu_1.json
        ├── yolov8n_relu6_coco_pose--640x640_quant_tflite_edgetpu_1.tflite
        └── labels.json  (if required)

Each subdirectory corresponds to a single model and contains all the necessary files to define, load, and execute that model.

PreviousCore ConceptsNextSetting Up an AI Server

Last updated 2 months ago

Was this helpful?

See for model family naming conventions

Model Family Names