LogoLogo
AI HubCommunityWebsite
  • Start Here
  • AI Hub
    • Overview
    • Quickstart
    • Teams
    • Device Farm
    • Browser Inference
    • Model Zoo
      • Hailo
      • Intel
      • MemryX
      • BrainChip
      • Google
      • DeGirum
      • Rockchip
    • View and Create Model Zoos
    • Model Compiler
    • PySDK Integration
  • PySDK
    • Overview
    • Quickstart
    • Installation
    • Runtimes and Drivers
      • Hailo
      • OpenVINO
      • MemryX
      • BrainChip
      • Rockchip
      • ONNX
    • PySDK User Guide
      • Core Concepts
      • Organizing Models
      • Setting Up an AI Server
      • Loading an AI Model
      • Running AI Model Inference
      • Model JSON Structure
      • Command Line Interface
      • API Reference Guide
        • PySDK Package
        • Model Module
        • Zoo Manager Module
        • Postprocessor Module
        • AI Server Module
        • Miscellaneous Modules
      • Older PySDK User Guides
        • PySDK 0.16.0
        • PySDK 0.15.2
        • PySDK 0.15.1
        • PySDK 0.15.0
        • PySDK 0.14.3
        • PySDK 0.14.2
        • PySDK 0.14.1
        • PySDK 0.14.0
        • PySDK 0.13.4
        • PySDK 0.13.3
        • PySDK 0.13.2
        • PySDK 0.13.1
        • PySDK 0.13.0
    • Release Notes
      • Retired Versions
    • EULA
  • DeGirum Tools
    • Overview
      • Streams
        • Streams Base
        • Streams Gizmos
      • Compound Models
      • Result Analyzer Base
      • Inference Support
  • DeGirumJS
    • Overview
    • Get Started
    • Understanding Results
    • Release Notes
    • API Reference Guides
      • DeGirumJS 0.1.3
      • DeGirumJS 0.1.2
      • DeGirumJS 0.1.1
      • DeGirumJS 0.1.0
      • DeGirumJS 0.0.9
      • DeGirumJS 0.0.8
      • DeGirumJS 0.0.7
      • DeGirumJS 0.0.6
      • DeGirumJS 0.0.5
      • DeGirumJS 0.0.4
      • DeGirumJS 0.0.3
      • DeGirumJS 0.0.2
      • DeGirumJS 0.0.1
  • Orca
    • Overview
    • Benchmarks
    • Unboxing and Installation
    • M.2 Setup
    • USB Setup
    • Thermal Management
    • Tools
  • Resources
    • External Links
Powered by GitBook

Get Started

  • AI Hub Quickstart
  • PySDK Quickstart
  • PySDK in Colab

Resources

  • AI Hub
  • Community
  • DeGirum Website

Social

  • LinkedIn
  • YouTube

Legal

  • PySDK EULA
  • Terms of Service
  • Privacy Policy

© 2025 DeGirum Corp.

On this page
  • degirum.zoo_manager.ZooManager
  • __init__(inference_host_address, ...)
  • list_models(*args, ...)
  • load_model(model_name, ...)
  • model_info(model_name)
  • supported_device_types
  • system_info(update=False)

Was this helpful?

  1. PySDK
  2. PySDK User Guide
  3. API Reference Guide

Zoo Manager Module

PreviousModel ModuleNextPostprocessor Module

Last updated 19 days ago

Was this helpful?

degirum.zoo_manager.ZooManager

Class that manages a model zoo.

A model zoo in terminology of PySDK is a collection of AI models and simultaneously an ML inference engine type and location.

Depending on the deployment location, there are several types of model zoos supported by PySDK:

  • Local model zoo: Deployed on the local file system of the PySDK installation host. Inferences are performed on the same host using AI accelerators installed on that host.

  • AI server model zoo: Deployed on remote host with DeGirum AI server running on that host. Inferences are performed by DeGirum AI server on that remote host.

  • Cloud Platform model zoo: Deployed on DeGirum Cloud Platform. Inferences are performed by DeGirum Cloud Platform servers.

The type of the model zoo is defined by the URL string which you pass as zoo_url parameter into the constructor.

Zoo manager provides the following functionality:

  • List and search models available in the connected model zoo.

  • Create AI model handling objects to perform AI inferences.

  • Request various AI model parameters.

__init__(inference_host_address, ...)

degirum.zoo_manager.ZooManager.__init__(inference_host_address, zoo_url, token)

Constructor.

Note

list_models(*args, ...)

degirum.zoo_manager.ZooManager.list_models(*args, **kwargs)

Get a list of names of AI models available in the connected model zoo which match specified filtering criteria.

Other Parameters:

Name
Type
Description

model_family

str

Model family name filter.

  • When you pass a string, it will be used as search substring in the model name. For example, "yolo", "mobilenet".

  • You may also pass re.Pattern object. In this case it will do regular expression pattern search.

runtime

str

Runtime agent type – string or list of strings of runtime agent types.

device

str

Target inference device – string or list of strings of device names.

device_type

str

Target inference device(s) – string or list of strings of full device type names in "RUNTIME/DEVICE" format.

precision

str

Model calculation precision - string or list of strings of model precision labels.

Possible labels: "quant", "float".

pruned

str

Model density – string or list of strings of model density labels.

Possible labels: "dense", "pruned".

postprocess_type

str

Model output postprocess type – string or list of strings of postprocess type labels.

For example: "Classification", "Detection", "Segmentation".

Returns:

Type
Description

List[str]

Example

Find all models of "yolo" family capable to run either on CPU or on DeGirum Orca AI accelerator from all registered model zoos:

    yolo_model_list = zoo_manager.list_models("yolo", device=["cpu", "orca"])

load_model(model_name, ...)

degirum.zoo_manager.ZooManager.load_model(model_name, **kwargs)

Create and return the model handling object for given model name.

Parameters:

Name
Type
Description
Default

model_name

str

required

**kwargs

any

you may pass arbitrary model properties to be assigned to the model object in a form of property=value

{}

Returns:

Type
Description

Model handling object. Using this object you perform AI inferences on this model and also configure various model properties, which define how to do input image preprocessing and inference result post-processing:

  • Configure the following image pre-processing properties:

  • Configure the following model post-processing properties:

  • Configure the following overlay image generation properties:

model_info(model_name)

degirum.zoo_manager.ZooManager.model_info(model_name)

Request model parameters for given model name.

Parameters:

Name
Type
Description
Default

model_name

str

required

Returns:

Type
Description

ModelParams

Model parameter object which provides read-only access to all model parameters.

Note

supported_device_types

degirum.zoo_manager.ZooManager.supported_device_types()

Get runtime/device type names, which are available in the inference system.

Returns:

Type
Description

list

list of runtime/device type names; each element is a string in a format "RUNTIME/DEVICE"

system_info(update=False)

degirum.zoo_manager.ZooManager.system_info(update=False)

Return host system information dictionary

Parameters:

Name
Type
Description
Default

update

bool

force update system information, otherwise take from cache

False

Returns:

Type
Description

dict

host system information dictionary. Format:{"Devices": {"<runtime>/<device>": {<device_info>}, ...}, ["Software Version": "<version>"]}

Typically, you never construct ZooManager objects yourself – instead you call function to create ZooManager instances for you.

For the description of arguments see

The list of model name strings matching specified filtering criteria. Use a string from that list as a parameter of method.

Model name string identifying the model to load. It should exactly match the model name as it is returned by method.

Call method to perform AI inference of a single frame. Inference result object is returned.

For more efficient pipelined batch predictions call or methods to perform AI inference of multiple frames

-- to set input image resize method.

-- to set input image padding method.

-- to set letterbox padding color.

-- to select image processing library.

-- to set confidence threshold.

-- to set non-max suppression threshold.

-- to set top-K limit for classification models.

-- to set pose detection threshold for pose detection models.

-- to set color for inference results drawing on overlay image.

-- to set line width for inference results drawing on overlay image.

-- to set flag to enable/disable drawing class labels on overlay image.

-- to set flag to enable/disable drawing class probabilities on overlay image.

-- to set alpha-blend weight for inference results drawing on overlay image.

-- to set font scale for inference results drawing on overlay image.

Inference result object returned by method allows you to access AI inference results:

Use property to access original image.

Use property to access image with inference results drawn on a top of it.

Use property to access the list of numeric inference results.

Model name string. It should exactly match the model name as it is returned by method.

You cannot modify actual model parameters – any changes of model parameter object returned by this method are not applied to the real model. Use properties of model handling objects returned by method to change parameters of that particular model instance on the fly.

degirum.zoo_manager.ZooManager.load_model
degirum.zoo_manager.ZooManager.load_model
degirum.zoo_manager.ZooManager.list_models
degirum.zoo_manager.ZooManager.list_models
degirum.connect
degirum.connect
degirum.postprocessor.InferenceResults.image
degirum.postprocessor.InferenceResults.image_overlay
degirum.postprocessor.InferenceResults.results
degirum.postprocessor.InferenceResults
Model
degirum.model.Model.predict
degirum.model.Model.predict_batch
degirum.model.Model.predict_dir
degirum.model.Model.input_resize_method
degirum.model.Model.input_pad_method
degirum.model.Model.input_letterbox_fill_color
degirum.model.Model.image_backend
degirum.model.Model.output_confidence_threshold
degirum.model.Model.output_nms_threshold
degirum.model.Model.output_top_k
degirum.model.Model.output_pose_threshold
degirum.model.Model.overlay_color
degirum.model.Model.overlay_line_width
degirum.model.Model.overlay_show_labels
degirum.model.Model.overlay_show_probabilities
degirum.model.Model.overlay_alpha
degirum.model.Model.overlay_font_scale
degirum.model.Model.predict

This API Reference is based on PySDK 0.16.1.